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Preface

As a resalt of informal discassions during the 1975 Nethoden wnd Verfahres der
mathematischen Physik meeting at Sberwolfach it was appareat that there was an
outstarding need for am intermatiomal semimar growp which coscerned itself
with probiems vhich had beem attempted but whick still stubboraly resisted
solutions rather tham xith problems vhich had beea solved.

The first such scmimar vas held at the University of Boam im Septesber
1976 under the heading of Mixed Bowndary Value Problems. Since then a member
of similar meetings on a variety of differeat topics have beem held at eitker
the University of Bomn or the University of Strathclyde. There is now every
indication that similar meetings will be held regularly and, moreover, that
they vill become increasingly multidisciplinary. Consequently. it has been
decided to make the work of these meetings more readily available by
publishing proceedings. This volume comprises the proceedings of the most
recent meeting held at Ross Priory, University of Strathclyde. ¥e are sost
grateful to Longman Group Limited for agreeing to publish these proceedings.

These various meetings could not take place without a considerable amount
of support and assistance from a number of sources. In this comnection we

are particularly grateful to

The Royal Society of Edinburgh
The Edinburgh Mathematical Society
The U.S. Army
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for their fimancial swpport. Thanks are also dse to all those colleagues xko
helped xith the refereeing of tke pzzers.  Last bat by 80 means Jeast, xe
record oer appreciation of the work dome by the secretarial staff of tke
Department. of Mathematics ir the University of Stratkclyde, especially Mrs.
Mary Sergeant whose quiet efficiescy helped in so mamy wvays to easure the

swooth remning of the conferaace.

Uriversity of Strathclyde G. F. Roach
Glassow G1 1XH

August 1959
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W.R. BRECKON
Measurement and reconstruction in
electrical impedance tomography

INTRODUCTION
In this paper we consider the inverse problem of Electrical Impedance
Tomography (EIT). 1In this medical imaging technique a pattern of current is
applied to the surface a2 of the body © and measurements of-the resulting
electric potential are made on 2. A survey of clinical application of this
technique can be found in Brown, Barber and Seagar [1] and compreheﬁsive
information on various aspects of the technique in the proceedings [2][3].
Mathematically the problem can be formulated as follows. Let 7 ¢ L*(Q)

be the electrical conductivity, which satisfies 7(x) > ¢ > 0 for (almost) all
x € . The potential u then satisfies

V.9Wu =0
being a combination of Ohm's law and Kirchoff's current law. The current
density j on 32 is given by

j= -7Vnu
where n is the outward unit normal on dQ. Where convenient we will use the
operator L7 = V.9¥. To solve the equation L7u = 0 it is sufficient either to
specify the Neumann condition j (together with an additional condition on the
potential, such as u(p) = 0 for some p) or the Dirichlet conditions u|dQ.
When one of the sufficient conditions is specified the other, or
complimentary, boundary condition is determined also for a given 1.

2 is also considered.

Whilst @ is clearly a domain in R3 the case of QcR
The question of the possibility of identification of y from a knowledge of all

pairs (j,u|d®), that is the uniqueness of solution of the inverse problenms,

P




v e cwvmlity Som—

P U U1 P,

[

has been considered by Kohn and Vogelius [4], who proved uniqueness for a
pieccwise analytic conductivity énd Sylvester and Uklman [5] who proved the
same for 7¢ C*(2). v

Ve will consider two aspects of the inverse problem here Ve present a
suggestion for a system of optimal measurements and a linearisation approach
to the solution of the inverse problem. In the latter we present an example
to show that the linearised inverse problem is not the inversion of a

Generalised Radon Transform as some authors have assumed.

Two-norm optimal measurement

The ideal case considered by Kohn and Vogelius and by Sylvester and Uhlman
assume that we have a perfect set of measurements, that is all pairs (j,u|dQ)
are known. This is equivalent %o knowing the transfer impedance operator R7
where R7j="|39' If we consider the finite energy case u ¢ HI(Q) then
R7:H'1/2(89) - H1/2(6Q) is a pseudo differential operator which is compact and
self adjdoint as a map Ho(dn) - Ho(an). The mapping 7 - R7 is non-1linear and
it is this mapping we seek to invert.

In practice we can only apply a finite number of current patterns and
measure voltage only at a finite number of points. The question arises:
which are the best measurements to make?

Isaacson [6] gives one answer to this question which he frames in terms of
a measure he calls distinguishability. If 41 and 92 are two conductivities
then they are distinguishable by measurements of precision e if there is a
current density je Ho(ﬁﬂ) for which

8(3) = 1IR3 3-Rgil 171151 1>
the number 6(j) is called the distinguishability. The best currents in the

sense of Isaacson are those which maximise 6(j)

——————




5) = supl IR 43Ryl

IIJ'II=12 - -
= sup<j,D“j»>
Hifl=1

where

D= |R71-R72|I/2
The map D is a cowpact, self adjoint pseudo differential operator

'~n°(an) 9 n°(an). It has a complete set of orthonormal eigen functions
I j €C°(), with eigen values Aj,dy,..., with A -+ 0 as k +w. Fron the
; min-max principle one can deduce that the largést distinguishability possible
is Ay which is achieved when j is an eigen function with this eigen value.
ﬂ ' ~Isaacson's algorithm for calculating this optimal current is based on the
power method (see for example [7]). We will take 91 to be the (unknown)
conductivity of the body and 92 as the best available guess for the
| § conductivity. The method is an iterative process which involves repeated
? measurement and can be expressed as follows:
1 ' Guess j(O) (where ||j(0)|| = 1)
% Repeat
i Apply j(n) and measure v(n) = R,ﬂj(n) H

Compute (@ _p 2j(n);

Set A = |[v(M-y* ()]

set §(M1) < ()

Unsil |15 501

The reasoning behind making repeated measurements of v rather than taking a
r ! basis of currents and working with the resulting matrix for R71, is that the

é measurement process involves error and so is not truly linear. lHowever the

power method only produces the largest eigen function, which would give only

f one measurement with which to estimate 41. It would be desirable to have a
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basis of currents at least spanning the same space as the eigen functionns Ik
with Ak<e. For this reason it is desirable to have a procedure which
computes all the eigen functions jk with A,>€.  The following procedure has
been found to work in computer simulations with pseudo random noise in the

measurement stage.

Guess jl(o),j2(0) ...,jm(o) (an orthonormal basis with Jdnjl = 0)

Repeat )
Measure vk(“) = Rﬂjk(n), compute v~k(“) = R,ﬂjk(n) for all k
Compute ik = <jk,vk(")-v~k(n)>
Calculate the eigen system for R = {rlk]’ RU"= UA
set 3, ™) =5 03
Until ||R-A|]<e
In numerical experiments little was gained after two iterations.
Point optimal currents
Isaacson's criterion for best currents gives the best currents only in the
sense of optimising the two norms of the voltage data measured for a given
current pattern. In practical systems each measurement of voltage is made
separately. It is of interest therefore to find a current pattern which
optimises the voltage difference at a point on 0@ between bodies of
conductivity 91 and 92.
Let pe d® be the point at which we make the measurment
v(p)-v~(p) = R7lj)(p)-(R72j)(p). We seek a j such that
7(3) = [v(p)-v~(p)]
is optimised subject to ||j|| = 1 and Janj = 0,
We can express the current pattern in terms of the eigen functions as

j= Ekjk. The optimisation problem is then
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maximise ZagA, j; (p)
subject to Sakz =1.
Using Lagrahgi;;_irocedure we obtain
= C/\kjk(P)
where
¢ = /(00N
The measurement procedure would then be first to calculate the eigen functions
using the method of the previous section then to make a measurement at p apply
the current
j=% mkjk(P)jk
to give the voltage v(p)-v~(p).
In the simple case @ = {xeR2:|x|gl} with 12 = 1,

71(x) = {1 x5

the eigen values can be explicitly calculated as
Ay = - 2 [k (L)

where p = (1-0)/(1+0) and the eigen functions are cos x6 and sin ké.

¢ |x|<p

A plot of the point optimal current for this case with p = 0 and various
values of p is shown in Fig 1. In the case of small objects in the centre

this procedure deviates least from that of Isaacson.
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Point Optimal Curent sigma = 0.300 r = 0.1 to 0.9.

Figure 1

Linearisation

The mapping 7 - R7 is non-linear. To solve the inverse problem it is
desirable to linearise this mapping. The original statement of the
linearisation appears in Calderon [8]. In this chapter Calderon's techniques

are used and elaborated upon to give linearised forms of the forward problem
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both in its-direct and integral form. Since the original reference is rather
hard to find it is hoped that this will help readers who have not yet located
a copy of this legendary Brazilian conference paper. Calderon's result is
extended to give a 'Neumann conditions constant' formulation. All published
reconstruction algorithms rely on some form of linearisation and yet the
approximations used are not always justified. With this in mind the subject
is treated in some detail here. We find, reassuringly, that they are all
simply the Frechet derivative of appropriately defined forward mappings.

If the conductivity 7 is perturbed to 7y+dy and yet one form of sufficient
boundary data for u is kept constant, the complimentary boundary data will
change. For example, if a current density j is applied resulting in a
potential u, that is L7u = 0, with -7Vnu = j on 0®, then when 7 is changed to
1+87, the potential u will change to u+du, hence L7+67(u+6u) = 0 with
-(7+67)Vn(u+6u) = j. The voltage difference on the boundary 6u|aQ will be
the data we measure in an attempt to detect this conductivity change so we
want a formula for éu in terms of 6y (the reverse would be too optimistic!),
neglecting higher order terms in éy. This is achieved by writing fu as a
series in 67 and truncating after the linear term. This series involves the
linear operators L67 which depends on é7 in a linear way and G7 which is the
inverse of L7,(the G stands for Green's function of course). The
non- specialist reader, if daunted by manipulations of differential and
integral operators as though they were numbers, may like to think of them as
matrices, as they would be if we passed to some discrete approximation to the

operators.

CHOICE OF SPACE FOR 7

Standard elliptic theory, such as that presented in Gilbarg and Trudinger
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[[9], requires the coefficients of the partial differential equations to be in
L®(®) vhich is a fairly weak assumption. To guarantee ellipticity of the
operator L7 we certainly need 7 to be bounded away from zero, 7> ¢ > 0
(almost everywhere). In the following results we will need to be able to
evaluate ||7|d®||, that is we need to estimate the magnitude of the
conductivity on the boundary. In L*(R) there is no natural restriction
mapping as # is a set of measure zero. While L®() contains extremely nasty
functions it has an extremely strong convergence criterion. We would
certainly be unwise to compare images on the basis of their L* distance.

Natterer [10] suggests that the appropriate norms with which to compare
two dimensional images is H1/2. This space just fails to include the
characteristic functions of domains with sufficiently regular boundaries.
The weighting of high frequency terms (or if you like the inclusion of the
1/2th derivative) weights edges more strongly than the simple L2 norm and this
is consistent with the importance of edges in medical images. If we are to
include continuous images in our space, then by the Sobolev Embedding Theorem
ve must use HS for s > 1. This is also sufficient to guarantee M5 ¢ L*.

The requirement of this section, that of a bounded restriction mapping,
corresponds to the existence of a natural trace operator in Sobolev spaces.
In the space H°(Q) there is a natural trace operator H5(Q) - HS'1/2(3Q). If
we require 7|9 to be in HO(22), then that too would point to using 1€HS(Q)
for s greater than é.
DIRECT FORM
In this section the Frechet derivative of the potential as a function of
conductivity is calculated. First the inverse operators are defined as
follows:

ng ri@) - 19
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is the inverse of L7:Hg(9) 5 H’l(ﬂ). Since the Dirichlet problem
L7u =8, Ulp=0
has a unique solution, G is well defined and the spaces have been chosen so
that the inverse is bounded. Similarly
-1
Gg: (@) - #i@)

solve
L7u = s, 7Vnu =0, Jan“ =0
In addition we will need the mapping
6% K12 - il
which solves the homogeneous Neumann problem

L7u =0, 7VRu = h, Janu =0

In estimating the norm of L7 which depends linearly on 7, the following
Lemma will be used.
Lema 1.1 LJL,||g y1<||7]| vhere S is either K or Hy
Proof
u
SUPyescht —ﬂ-ﬂ-{F
|Janw7Vu.n-JQ7Vw.Vu|
[Ty
- S“pwES(JQ7Vw.Vu)/||w||H1
REATILIE

We are now ready to prove the following theorem:

IwaL

||L7“||H‘1(Q)

SUPyues

[ZaN

Theorem  If L7u =0 and L, . (u+téu) = 0 and the Dirichlet or Neumann data

7+67
for u and u + fu agree then

- 2
L67u + L76u = o(|]|6711%)

For the Neumann constant case we also have

f
v
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B, + Wydu = o(6711%).
The forward mapping defined by F(7) = u (which solves a given Neumann cr
Dirichlet problem) is C*. For the Dirichlet case
D
' = -
F'(71)é7 = G7L67u
and the Neumann case
VeaNFmw — N _ B
F' ()67 = G7L67u G767Vnu
Proof
In all cases we have

L7+67(u+6u) = Lgmu + L76u + L676u =0
First consider the Dirichlet conditions constant case fuf gy = 0.
Applying G = Gg gives
D

(1+G L57)6u = 'GL&,,U
Formally

fu= T (-0L))

u = - u
g0

which converges for ||GL67|| <1. Using Lemma 1.1

[16Lg, || < [16]]. 116711

so convergence is achieved by requiring

116711
<1
TIeTT
(the norm used for linear operators being the standard linear operator norm).

This constitutes a Taylor series for F, as L67 is linear in 87 the jth

term is
homogeneous of order j in §y. In particular we have
D
' = -
F'(9)dy = G7L67u
and
_ 2

L67“ + L75u = o(]|67]1%)

as claimed. It can readily be seen that F is C* as the higher derivatives

can be extracted from the Taylor series.

10
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In the Nicumasa coastast. case we will treat the two cosposests of
(@) = ¥5(2) OF /2(&) separately witing 7= 1, + 7,- The 1w partial
derivatives can be calculated separately. In addition to the eguation
l.p' + l.f'a * l.‘,& =0
ve have its boundary equivalest
(re61)V, (wrbu) = 1 8.
To calculate &/, ve assume b1l = 0-
‘l'bebondaryco-ditiumrcdmtoﬁ.&=0ndtiepmfpmceedsas
beforeuithG:G:aldwehre
o= T (-CL)
= - .
=R
and thus
3
,;; 610 = ‘q‘lasp..
®x the other hand #/dy, can be calculated by assuming that 7 = 0 in 2°.
This leads to
L1&| =0
and
7vn6|| = ‘673vn|| - 613V.5u.
The proof proceeds in a similar way to the interior case. Applying GE
bu = G:(— 673Vnu- 70 Vn6u)
rearranging
B B
(1+G7673Vn)6u = —01673Vnn.
The series
- 3 (cB b
bu = jfl( (}767'3"") u
converges for ||c‘;513vn|| < 1 shich is ensured by |]67,}] < 1/(||c‘;||.||vn||).

Thus we have the derivative
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and the ressit
b + Wooe = o(llénl 1)
From the chais rule
F'(1)6y = G:l. .- c:ﬁ,v...
The functioa cam be seem to be C® as the partial derivatives exist of all
order.

In the Dirichlet comstant case F is equal to its Taylor expansion in a
neighbosrhood of 7 and is therefore am amalytic mapping (this was pointed out
by Calderoa nsing v =1). (In the Neumann conditions constant case the proof
gives the slightly weaker result that F is am analytic in each component
separately). This indicates that the forward mapping could hardly be better
behaved; however it is the inverse of this mapping which is required for EIT

reconstruction and as we shall see that is not nearly as nice.

INTERPRETATION AS A SSIRCE
The essential result of section 3.4 is that to first order we can assume
V.9Véu = -V.6Vu.

One interpretation of this is that the perturbed field fu is 'caused' by a
distribution of current sources -V.§9Vu. Equivalently one could say that
adding a source field s = V.§7Vu would cancel the effect of changing the
conductivity by é7.

An interesting case to consider is to take §y = 6p the dirac delta
distribution at a point p. Ve will assume that u € Cl(ﬂ) and that p is not a

critical point, Vu(p) # 0. For simplicity we will take y = 1. The source

12




ters is nov -V6P.Vu vhich is a dipole with dipole moment |Vu(p)|oriented in
the direction of the current vector at p. The perturbation §u to first order
is then the electric field associated with the dipolee. The function 6u|an
is the point response of the system (up to first order), in optics this would
be called the point spread function. In contrast to ideal optical systems
the response is position dependent falling off dramatically as p gets further
{rom the bousdary. The field from a dipole is asymptotically (2x cos 0)/r2.
Here g is the dipole moment, r the distance from the dipole and # the angle
relative to the dipole orientation. 1In this case g = |Vu| which is at best
constant and typically decreases away from d2. Hence we find
|18l ol 1y1/2 30 = o(1/p?) where p = dist(p,M). This means that the ability
of an EIT system to detect a small object of high conductivity contrast will
fall off at best proportionately to the inverse square of distance from the

boundary.

INTEGRAL FORM
It is useful to reformulate the linearised problem in an integral form. In
Chapter 4 the finite element method will be used to represent the electric
potential and to solve the forward problem. In the finite element method
difierential equations are formulated as variational problems, this is
equivalent to the weak form of the differential equation. Since this is
essentially an integral formulation it will be advantageous to express the
linearised conductivity- to-voltage mappin as an integral operator.
HmtmﬁththrmyUﬂﬂLﬂ:OaMawv(Umdvmu%msw)
V. (UyWV) = 4VU,WV

and so using the divergence theorem

13




* V.U = J 2WV.VU.
% Jan noJg
j From above
_ 2
L57u + L76u = o(]|67]]%)
where L7u = L(7+61)(u+6u) =0 and 1V u = (7+67)Vnu. Choose any v with
L,yw = 0 then
! V.w(7Véu+dyVu) = 7Vw.V6u+67Vw.Vu+o(||67||2).
Applying the divergence theorem

Janw(7vn6u+67vnu) = J§7VW.V6u+6ch.Vu+o(||67||2)

Since L7w = 0 we know that

Jméu'yvnw = JQ7V6qu

also, from the boundary conditions 9VéuV + é7VuV = o(||67||2), the result is
jmsuyvnw = - Jﬂam.w +o([161119).

Let us now consider the implications of this formula for the
reconstruction process. One has some initial estimate of the conductivity 7
f and vishes to correct this using the best linear approximation. Some known
current patterns ji are applied to the surface of the body 9. Measuremenés
of voltage u; are made between various electrodes. Since measurement is an
averaging process over the electrode we will assume that the measurements are
of the form

Yik*® Jm“’"k
where Wy is characteristic of the geometry and electrical properties of the
electrode pair k. We have an @ priori model of the body with conductivity 7
which we compare with the real body which has conductivity 7 + §y. The

discrepancy between the two is measured by the data

5Vi,k = J.mﬁuwk

14




We then solve the Neumann problem L7w = 0 subject to Vnwk = Wy - To find a
linear approximation to the conductivity error §7 we solve the system of
linear equations
(Wi,k = -Jﬂﬁ‘wak.Vui
In this formulation the Neumann conditions were kept constant. This is
the most useful formulation for impedance measurement for both theoretic and
practical reasons. For completeness we must compare this to the problem
investigated by Calderon in which the Dirichlet conditions were fixed and a
difference of Neumann conditions (that is boundary current densities)
measured. In this case the boundary conditions are j = -7Vnu and
6j = -6(7V,u) = 67V u + ¥ bu
assuming now that 6n|aQ = 0. This leads to the result
2
wS(w) = | erweTu + o(]1611 1)
Jm n Q (

which does not have the curious minus sign

Not a radon transform
It has been assumed by a number of authors (Schaumberg [11], Barber and Brown
[12], Vogelius and Santoza [13] that the mapping F:67 - 5“'39 can be
approximated by a Generalised Radon Transform (GRT), in the sense of Quinto
[14].  Schaumbert assumed that the fibres were the current streamlines
whereas Barber and Brown and Vogelius and Santoza assumed them to be the
equipotential lines (in the case QQR2). Such GRTs are linear maps so it is
reasonable to compare them with the Frechet derivative F(y) which is in a
specific sense the best linear approximation.

Consider as before the unit disc. Take J = cos 6, ¥ = 1. The solution

of the Neumann problem for Laplace's equation is clearly u(r,8) = r cos 6 or

15
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equivalent u(x,y) = x. If the perturbation §7 is circularly symmetric then

cos @ will still be an eigen funtion of R1 + §y. For simplicity take

1 x|>
1px) = {
e |x|<p )
= = ! .
then R7(p’x)cos 8 = Ajcos § and bu = §, (0)cos 8 + o(|6p|”). Thus éu has

support on & - {x/2.3r/2}. If F'(1) vere a GRT then the support of du would
be contained in the 'shadow' of the set S = {x:|x|<p}, that is all the § € 00
such that $n S ¢ 9 where % is the fibre through 6. It is clear that this
is not the case in this example either for the current streamlines

% = {(x,y):y=cos 6} nor for equipotential lines & = {(x,y):x=cos 6}.

Reconstruction algorithms
Some of the reconstruction algorithﬁs suggested by this work have been
implemented and numerical results are reported in Breckon and Pidcock {15].
We will only give brief details here. The general procedure is as follows.
Make an initial guess 7(0) to 7
Repeat
Choose current patterns Jl(n),j2(n),...,jm(“), possible using an
optimal procedure and make measurements 6Vik

Find a least squares solution to
oV = -Jnnywk.Vui for all k,i
Update 7(n+1) = 7(n) + 67
Until 6vik <€
The linearised inverse problem is extremely ill posed as can be seen from
the singular values given in [16]. Consequently regularisation must be used
in solving the linear system. If only one iteration were used, the small

number of useful data values given by the optimal methods (i.e. only those

16
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which can distinguish 7(“) from 7) would be a severe problem. However in
both of the adaptive methods discussed new currents are found at each
iteration to distinguish best between what is really there and the latest
guess. The map R7(n) = R7,will be completely different at each iteration
giving rise to completely different current patterns and voltage data. While
the data set measured at each iteration is typically smaller than that used by
non- adaptive methods, the information content of the data is maximised at each

step.
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S.R. CLOUDE
Polarisation in electromagnetic inverse
problems

ABSTRACT

With recent advances in measurement technology, full vector information is now
available from electromagnetic scattering experiments. This paper presents a
review of techniques developed for the inclusion of this vector information in
inverse scattering theory.

The magnetic field integral equation is used to develop three inverse
scattering models and to demonstrate the importance of full polarisation
information for 3D reconstruction. We also consider two other inversion
techniques, vector diffraction tomography and inverse boundary conditions, and

discuss the polarisation aspects of each.

1. INTRODUCTION
Very often the vector nature of electromagnetic waves is ignored in direct
scattering problems. Solutions are then formed for a complex scalar
vavefield satisfying the scalar Helmholtz equation. This approximation is
justified only when 2-dimensional problems are considered (in which case we
can treat TE and TM waves separately) or when paraxial solutions are adequate
and crosspolarisation is not of interest. A further advantage of adopting a
scalar approach is the unity it provides with acoustic scattering theory (see
Jones 1986).

For 3-D inverse problems however, this scalar approximation is neither
justified nor desirable. Measurement techniques have been developed (mainly

as a result of interest in frequency re-use in communications) to accurately
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measure vector field quantities (see the review by Cox 1981). Here, we
address the problem of how such information can be used to help in the

inversion process. This provides a great challenge to inverse scattering

theory; a complete inversion of the vector problem still evades us (see
Langenberg 1989) but many of the concepts required have been identified.

They involve advanced ideas from vector scattering theory, as well as such
unlikely elements as Lie algebra and group theory. While the subject is
still in the early stages of development, we present here a selective review
of techniques of use in the vector inverse problem. For the sake of brevity,
we concentrate only on those features which relate directly to polarisation of
the scattered field, leaving other details to the references. This may be
considered an update of a similar review published in 1981 by Boerner.

With this in mind we develop the paper in three main stages: first we
review the matrix algebra used to describe polarisation effects and consider
general symmetry properties of the scattered field which follow from generic
properties of the scatterer. These are important because they may be used to
impose global or local symmetry on the reconstruction. We then consider a
set of inversion techniques based on the magnetic field integral equation
(MFIE), with the high frequency physical optics and extended physical optics
theories as special limiting cases. In particular, we review the important
Kennaugh- Cosgriff inversion formula and show how we may add a polarisation
correction term (first derived by Bennet) to yield information on specular
point curvature. We then describe an exact inversion method based on the
NFIE and discuss polarisation aspects of two other inversion schemes; vector
diffraction tomography using the dyadic Greens function (Langenberg 1989) and
the inverse boundary condition method as developed by Imbriale and Mittra
(1970).
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2 MATRIX FORMALISM
Under a far field assumption, we may write the vector scattered field as a
multiple convolution between the incident field and object impulse response as
ey =Sy *ey 0<HN<I (1)
By a Fourier transform we obtain a 2x2 complex scattering matrix [S] at
angular frequency v as
E = [S].E; (2)
where QS and EI are spinor quantities representing the scattered and incident
electric fields respectively. The spinor nature of the electric field
follows from its transformation properties under a change of (complex)
orthogonal base states (see Cloude 1986). We may write such a transformation
as
B = [Uy).E 3)
vhere [Uy] is a 2x2 unitary matrix with unit determinant. We may interpret
this geometrically as a rotation in a real three-dimensional space by writing
[U2] as
[Uy] = cos 8 o - i sin @ (oy cos a + gy cos § + oycos 7)
= exp(-if[¢g.n]) (4)
representing a rotation of 20 about an axis specified by angles a, #, y. The
set g = (ao,vx,ay,az) are the Pauli matrices. From spinor algebra we know

that we may associate with (3) a spin matrix or quaternion

[X] = xoy + yoy + 2oy (5)
where the real 3 vector r = (x,y,z) maintains unit modulus under a
transformation
[X) = [Uy] (X [U,]" (6)
or
r' = [0g].r (7
22
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where [0g] is a 3«3 real orthogonal matrix. The locus formed under unit
modulus is termed the Poincare sphere (see Born and Wolf 1965), which sits not
in physical space, but in an abstract polarisation space of the spinor E.

Many measurement systems operate by measuring the vector r rather than the

complex spinor E (Cloude 1989). The two are related by the spin matrix X as

x = Byt - By
y = Re(EyEy*)
z = In(EyEy*)

If ve further define m = EyEy* + EYEY* then g = (m,r) is called the Stokes
vector of the wave spinor and [X] = moj + r.¢ is called the wave coherency

matrix.

In scattering theory, we generalise the above by considering (2) as a

spinor transformation
[8] = det([S]) U] [H]

= d.exp[(-ifn+p) .¢] (8)
vhere [U] is 2x2 unitary and [H], 2x2 hermitian (we shall assume for the
moment that det([S]) is nonzero, it becomes zero only for degenerate
scattering systems such as a linear dipole or helix). This transformation
corresponds to a combination of boost and rotation of the Stokes vector and
has 8 degrees of freedom; 2 direction vectors n and p lying in the space of
éhe vector ry and 2 angles 6 and A. The direction vectors n and p figure
prominently in the theory of null polarisations as developed by Kennaugh (see
Kennaugh 1952 and Boerner °%1). He showed that for backscatter, [S] has two
orthogonal eigenstates and two copolar null states (where the incident wave is
scattered into an orthogonal state). Since these states display special
symmetries of the scattering volume they have been proposed as important

features in the inverse problem (Boerner 1981), but to date no successful use
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has been made of these null states, mainly because of the complexity of their
dynamics.
By using the Stokes vector g instead of the spinor E we may express (2)
and (8) in the form
s = DMl ©)
where
M = % Tr(e S ¢ §%) = Als @St (10)
[M] is called the Mueller or Stokes reflection matrix, Tr stands for the trace

of the matrix and A is a 4x4 unitary matrix of the form

1 1 0 0
0 0 1 -i
0 0 1 i
1 -1 0 0

The matrix [M] is very important in vector scattering theory; the key problem
in inverse scattering is to relate the elements of [M] to shape and material
properties of the scattering volume. We also note that the Stokes vector g
may also account for partially polarised waves where m? > r.r. Such states
lie inside the Poincare sphere (with random polarisation at the origin).

This extra degree of freedom in g means that [M] is more general than [S], it
contains all the relative phase information of [S], together with information
on correlations between various elementary scattering mechanisms. To see
this we outline an alternative matrix formalism based on a 4x4 hermitian
covariance or coherency matrix (see Cloude 1986, 1989). The covariance

matrix (E] is related to m;., the elements of [M], by 16 Dirac matrices,

J
formed from direct products of the Pauli matrices as

[2] =mji Ui®0'j (11)
The scattering coherency matrix [T] is based on complexification of the spin

matrix X and is related to [M] by a set of 16 traceless hermitian matrices f

24

s
v
e s g e

B Py




0] = =55 Byig (12)
vhere
-— * x
Biiss =¥ 450751 (:3)
The matrices [£] and [T} transform wader a similarity transformation involving
a 4x4 unitary matrix [qi . Tepreseating a change in complex matrix basis for
the expansion of [S]. i.e. if [S} = k.# then
k= [lﬁ4] -k (14)
and
[r] = [glimig)” (15)
shere [T] = k.k*.  For example, we may determine the form of [S] under
bac:scatcer shen the object has N fold symmetry in a plane perpesdicular to
the line of sight. From reciprocity it folloxs that [S] is symmectric. i.e.
Sgv = Syy» DO is symmetric and T and ¥ are 3<3 hermitian. Under a plane
rotation 7, k becomes k' = [U,].k where [U;] is given by

i 0 0 0

0 co0s27 -sin27 0
0 sin2r cos27 0
0 0 0 1

Since k3 = 0 for backscatter it follows that for objects with N fold symmetry
(and N >3) [S] must have the form of a complex scalar, i.e.

{8} = ko 5 (16)
This is a sisple example of what can be done by considering symmetry
nroperties of matrix descriptors (see Van de Hulst 1981 for further discussion
of symmetry constraints on [M]). We can generalise such arguments to
arbitrary unitary transformations of k, when we need to involve Lie algebra to
ascertain invariant features under elementary rotations. Further details may

be found in the references (Cloude 1986, 1989). ¥e now turn to scattering
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theory in am attempt to relate these matrix observables to shape and material

properties of the scattering volume.

3. ELECTRSMACNETIC INVERSE SCATTERING
In this section we consider the problem of reconstruction of a
three-dimensioral perfectly coanducting body using the magnetic field integral
equation, the wave equation with inverse boundary conditions and vector
diffraction tomographv. In particular, we show how full polarisation
information is needed for accurate reconstruction when the object has unequal
principal curvatures, and show how such curvature information is contained
within the elements of the Mueller matrix [¥].
¥e begin with Maxwells equations in the time domain,

¥ x E(r,t) = -p 8li(r,t)/6t

V x li(r,t) = € 8E(r,t) /6t + J(r,t)

V.(r,t) =0

V.E(r,t) = p(r,t)/e
where

H(r,t) = 1/p V x A(r,t)
and
A(r,t) = s Jv I(r',t-7)/R 4V

By defining the total magretic field as QT = ﬂi + Hs and imposing the
boundary condition n x ﬂT = Js, we obtain an integral equation (the MFIE) for

surface current Js as (see Poggio and Miller 1973)

Js(r,t) = 2n x }\l‘i +1/27 n x J L(Js) x R ds (17)
s
vhere I, is a differential operator
. 1 6 1
= — + —
R% & 3
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Once the current is snown, the scattered far field may be determined from

1 8Js
Hy(r,t) = g Js 5= xx ds (18)
We may write the MFIE (17) as the sum of three contributions:
J(r,t) = 2n x ﬂi + pJ(r,t) + 8§ (19)

where the first term represents the direct influence of the incident field,
the second represents a self patch contribution to the current and the third,
S, is an integral over other patches with currents evaluated at earlier times.
The factor p has been shown by Mieras and Bennet (1982) to be (Marx (1985)
derived a more general expression for the self patch term which reduces to the

Bennet/Mieras result for constant current across the patch)

1 [AA
=3 |4z (KU - Kv) (20)

where KU and Kv are principal curvatures and AA is the area of the patch.

We may now derive inverse scattering identities by considering various
approximations to the surface current. In the simplest case we ignore the
self patch term and the integral S and consider only the forcing term. If we
further assume the current to be zero on the shadow side of the object we
obtain the well-known physical optics assumption. The expression for the
scattered far field (18) then becomes

B, (r,t) = A J 6/8t (n x 1) x g ds (21)
If we assume an incident impulse plane wave with E polarised in the x
direction and travelling in the positive z direction then the vector triple
product reduces to a simple area projection funtion which, when Fourier
transformed and integrated by parts, yields the following expression for the

impulse response (see Kennaugh and Moffat 1965)
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r}{s(r,t) = grc —Esg- (22)

where A(ts) is the projected area funtion of the target, i.e. the cross

sectional area of the target in a plane perpendicular to the z axis,
delineated by a plane moving with a speed of one half light velocity. For
example, for axial incidence on a rotationally symmetric target A = wp2, where
p is the target contour function. This important result was first derived by
Kennaugh and Moffat in 1965 and has been used by several authors as the basis
for electromagnetic imaging (see Young 1976, Shubert 1977). Note that while
the early time impulse response is well approximated by this technique, late

~ time ringing due to damped current flow on the object is ignored (it is
contaired in the integral S which we chose to ignore). This technique has
been extended to account for late time damping using GID, moments of the
impulse response and phenomenological damping terms (Kennaugh and Moffat
1965) .

The technique known as ramp response imaging (Young 1976) is based on
integrating the impulse response twice to yield a direct relationship between
a measured waveform and the area function A(ty). This has been used to
derive information on object cross-section as a function of distance along the
iine of sight as well as object length and total volume (from the integral of
the ramp response). By using multiple looks, limiting contours have been
found for object shapes such as cubes and concentric cylinders. Note that
this time domain result is related to the well-known Bojarski identity by a
Fourier-Radon transform (as showr by Boerner 1978).

For our puposes we note that under physical optics there is no

depolarisation of the backscattered signal. However, this does not mean that
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there is zero depolarisation in the high frequency limit of the MFIE, as we
not only ignored the integral S but also the self patch term in deriving this
result. Since the latter is proportional to the radius of the self patch, we
might expect it to be of only second order importance (very often the self
patch term is ignored in numerical calculations using the MFIE). However,
this is not the case for general scattering bodies. When determining the
scattering matrix for the object, the self patch term makes an important
contribution to the phase difference between copolar terms, as well as
generating finite cross polar terms. In fact, the self patch term is only
zero for surfaces which have equal radii of curvature, such as a flat plate or
sphere.

If we assume the current over the self patch to be of constant magnitude
and equal to the physical optics current then we may write a better
approximation to the surface current as (Mieras and Bennet 1982, Bennet 1978)

I=2nx B+ € (K-K)Upgg - Jpoyl)/4 (23)
where we have assumed a circular patch of radius € = ct-z and the unit vectors
u and v are aligned with the principal coordinate axes of the surface at the
point of interest. When we integrate this expression to obtain the scattered
field, the € factor yields a term proportional to the first instead of second
derivative of the area function. The final result for the impulse response
is of the form (see Foo 1984, Chaudhuri 1986, 1977)

1 6% Kby an
r f(r,t) = 57 ) M g {rwe - @rwy (29)
where we have assumed a horizontally polarised incident magnetic field with
unit vector ay.  We can now determine the elements of the scattering matrix
[S] as
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SHH=-2—T-5:2-+-4_IKECOS 2a (25)
brkvan
SHV =~z % sin 2a (26)

162 Kuky o
SVV:E;-&;—Z. _I‘K—ECO 2a (27)

where a is the angle between the wave coordinates and principal coordinates

for the specular point. If we expand this matrix in terms of the Pauli
matrices and then perform a Fourier transform with respect to ko’ the free
space wavenumber, we obtain a complex vector k of the form

k = (ky2A(kg) /27, & ikgh(k)cos 2a, & ikjh(kp)sin 2a, 0) (28)
where A is the difference in curvature at the specular point and A(ko) is the
value of the Fourier transform of the area function at spatial wavenumber ko.
Note that A is real, so the second two elements are in phase quadrature with
the first. This implies that SHll and SVV have equal magnitude. Their phase
difference, however, is directly related to the factor A. This means that we
can estimate curvature difference at the specular point by measurement of the
phase difference between copolar terms (measured at a wavelength much shorter
than body dimensions, see Chaudhuri 1986, Boerner 1981). Note we also have
information on the size of the object through the factor A(ko) and on local
orientation through the angle .

We can avoid the need for coherent measurements (accurate phase
measurements are very difficult to achieve in practice) by calculating the
coherency and Mueller matrices. The three pieces of information A(ko), A and
a are then encoded in the diagonal elements of [M] as

ko 1AGeg) |2 = 4a2Tr([H]) = 42 (g gimy #ggtigg) (29)
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0% = 2k Bmgg - meg) /Tr((H]) - (30)

My~ My 4 Moo~ M
00 "117722 "33 (31)

Moo*™11™Mo2™ "33
The 12 off-diagonal terms of the Mueller matrix relate to correlations between

tan 2a =

curvature difference A, amplitude weighting A(ko) and orientation a and hence
for single point scattering provide no extra target information. For complex
objects however (e.g. rough surfaces) these additional terms are useful for
assessing variation of surface topology.

The next logical stage is to include the whole MFIE in the determination
of surface current. Unfortunately we cannot then obtain analytical solutions
but must resort instead to numerical techniques. Nonetheless, Bemnet (1981)
has used the full time domain MFIE for object reconstruction using two
numerical techniques, the first based on iteration using successive estimates
of the surface current and measured ramp response and a second based on a
straightforward extension of the time stepping procedure used in direct
scattering implementations of the MFIE. However, examples are only worked
for axial incidence on bodies of revolution where the area function may be
parameterised in terms of a contour function p and depolarisation does not
occur.  Although extension to non-symmetrical bodies was attempted, this area
still remains to be fully investigated.

In summary, we have seen that we can obtain three inverse schemes based on
the MFIE, the first yielding the physical optics Kennaugh- Cosgriff formula
which is a time domain version of the Bojarski identity. We then saw that by
including the self patch term we obtained a polarisation dependent correction
to the inversion formula whereby, in the high frequency limit, the phase

difference between copolar terms is simply related to curvature difference and
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depolarisation is caused by misalignment of wave and surface coordinates.
Finally we saw how the full MFIE may be used for object reconstruction by
using numerical techniques akin to the time stepping procedures well known

from direct scattering applications of the MFIE.

3.1 Inverse boundary conditions and vector diffraction tomography

As ar alternative to the MFIE formulation of electromagnetic inverse
scattering, Imbriale and Mittra (1970) devised a technique based on an inverse
boundary condition for the wave equation. Weston and Boerner (1969) showed
that this condition (namely that the total tangential electric field must be
zero at a surface of a perfect conductor) is sufficient to reconstruct the
object.

In this technique, complex measured data is required over an enclosing
sphere at one frequency. This data is then Fourier transformed to obtain
weighting coefficients in a Fourier expansion in terms of the angular variable
o. These coefficients are then used together with the appropriate Greens
function (a Hankel function for the 2-D problemr considered) to search for a
point at which the total field (i.e. incident plus scattered) is zero (or some
minimum if limited aspect data are obtained). The technique effectively
involves analytic continuation of the field up to the surface of the scatterer
and can be modified for concave bodies and multiple scattering (see Mittra
1973).

Unfortunately, although the technique is perfectly general and can in
principal be used for the three-dimensional case, only two-dimensional
examples have been published. Since 2-D problems can always be decoupled
into TE and TM waves, the significance of polarisation for the 3-D case has

not been clearly developed. Note that this technique is a point by point
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reconstruction and such tends to be computationally intensive. However, for
many applications only a limited number of surface points may be required and,
with the widespread availability of super computer power, this technique may
become feasible for low to intermediate frequency applications (the

Kennaugh- Cosgriff formula being more efficient for high frequency problems).
Ahluwalia and Boerner (1973) considered a generalisation of this technique to
lossy dielectric bodies and showed that, while uniqueness is no longer
assured, useful reconstructions can still be made, given limited a priori
target information.

The third technique of current interest for 3-D inverse scattering is that
based on a vector extension of linearised diffraction tomography (see
Langenberg 1989). In this technique, the vector Greens theorem is used to
obtain an electromagnetic version of the Porter-Borjarski integral equation

for a vector holographic field 6 as

(o]
8 = - 2up ” Je(R,0)6, (R-R,5) %R (32)
-m
¥here G, is the imaginary part of the vector Greens Function given by
G = (I+W)g (33)

where I is the identity dyadic and g the scalar free space Greens function.

In order to invert the Porter-Bojarski formula we must perform two operations;
an inversion of the convolution (as in the scalar case) plus the added problem
of inversion of the dyadic G, The former can be handled by linearising,
assuming physical optics, and integrating with respect to the frequency
variable w. The latter, however, is difficult because the imaginary part of
the Greens dyadic has zero determinant (in far field scattering it effectively
projects 3-D fields onto a transverse plane). The result is that only

projections of the solution can be calculated, leading to two simultaneous
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scalar inversion integrals for a dyadic V7, where y(R) is the object singular
function which is related to the characteristic function considered in the
traditional scalar Bojarski theory. The net result is that differential
geometric manipulations are needed to obtain reconstructions using this vector
theory (see Langenberg 1989). The relationship between diffraction
tomography and the extended physical optics theory of Bennet has yet to be

evaluated.

A SUMMARY AND CONCLUSIONS

In this paper we have reviewed techniques of use in the-formulation of vector
inverse scattering problems. We have seen that matrix algebra may be used to
provide a formalism suitable for measurement and analysis of polarisation
problems and, in particular, that transformation properties of the matrix
descriptors may be used to establish symmetries of the scattering volume. We
have also seen a clear relationship between the coherent scattering matrix and
real Mueller matrix, with the latter providing information of correlation
properties in complicated scattering scenarios.

The magnetic field integral equation may be used to establish three
important inversion techniques by using three approximations for the surface
current. The importance of polarisation is clearly demonstrated by
considering the effect of the self patch term in the MFIE. It leads to a
simple but important relationship between the copolar phase difference and
surface curvature.

Other electromagnetic inverse techniques which show promise for 3D
inversion are those based on inverse boundary conditions and the point by
point reconstruction technique of Imbriale and Mittra and those using

manipulations of dyadic Greens functions in a generalisation of the Porter
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Bojarski integral equation.
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G. DASSIOS AND K. KIRIAKI
Size orientation and thickness identification
of an ellipsoidal shell

ABSTRACT

A confocal ellipsoidal shell of unknown semiaxes, orientation and thickness is
excited into secondary radiation by a plane harmonic wave at low-frequency.
The outer ellipsoid forms a penetrable surface while the inner one is a soft
ellipsoid. We show that one measurement of the leading low-frequency
approximation and six specific measurements of the next approximation for the
scattering cross-section are enough to determine the size, the orientation and

the shell thickness of the target.

1. INTRODUCTION

In a recent paper [4], the first author has developed a simple algorithm that
provides the size and the orientation of an unknown soft ellipsoid out of
seven measurements of the forward scattering amplitude. Actually, only six
measurements are necessary but the seventh one simplifies the algorithm
significantly. The method was based on the solution of the corresponding
direct problem [2]. Furthermore, the problem of acoustic scattering by a
soft ellipsoid coated by a penetrable confocal ellipsoidal shell has also been
solved in the low-frequency realm in [3]. The present paper aims towards the
development of an algorith that will provide the size, the orientation and the
shell thickness of a soft scatterer which is coated by a penetrable shell with
exterior boundary an ellipsoid possessing the same foci as the scatterer
itself. It is shown that knowledge of the first two low-frequency

approximations of the scattering cross-section for specific directions of
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incidence are mecessary 1o ideatify the scatterer completely. More

accurately. we meed to kzow the valee of the leadizg term for amy direction of
-excitatior asd the valee of the secoid tern for six specific directions of
excitation. For scalar scatterizg by a2 ellipsoid oxe can look im [6,7,S].
Inverse scatterisg by am ellipsoid. from a2 completely differeat poiat of view,
is developed im [1].

2. THE DIRECT PR#BLEN

Consider the confocal ellipsoids

2 2 2
] I 2 X3 o
t s FmE5=1 1
a 2 2 2
22 9 3
and
2 2 2
g 1 % X3 ®
b 2* 3+t 31 2
bl b2 b3
where a1>a2>a3>0, b1>b2>b3>0=
ai>bi= 1 =1,2,3 and the semi- interfccal distaaces hl’ b2= h3, where
2_.2_ .2_.2 ;2
hy =25 - a3=by- b3
2 _ 2 2 _ .2 .2
hy=aj- ag=by b; (3)

372" %701 %
Suppressing the harmonic time dependence ¢ 19t ang assuming the incident plane
wave
3(r) = 5L, (1)

the direct scaitering problem at hand asks for the evaluation of a function

¥ (r) defined on the domain V' between Sy, and 5, and a function !+(£) defined
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oa the exterior to S, dosain V" which satisfy the following conditions. The

total field
¥(x) = ¥() + U(p), (5)
wkere U(r) is the scattered field, has to satisfy the Helsholtz equation with
wave number k
@2 () =0, pevt (6)
shile the inner field ¥ (r) has to satisfy the Helmholtz equation with a

different wave nusber Kk

(AskD)¥(r) =0, reV. (1)

On the outer boundary Sa the boundary conditions
¥ () =¥(r), £€S, (8)
1.8 =B, (D), £eS, ©)

that secure penetration are to be satisfied, while the inner boundary Sb
consists of a soft boundary
¥(5)=0, €5, (10)

The positive constant
+

B = (11)

determines the ratio of the outer to the inner mass density. The ratio of

'bll'b

the bulk moduli of elasticity is given by
7 - -

2
where 7 stands for the relative index of refraction. For convenience we

introduce the parameters

B=B- 1 (13)

2

C=By2- 1 (14)
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which imply

2 M (15)
U TS

Finally, the scattered field U(r) should satisfy the Sommerfeld radiation
condition at infinity.

The low-frequency analysis of this scattering problem can be found in [3].
In particular the leading two low-frequency coefficients of the scattering

cross-section are provided by

2
2 1.B+1 A N oA
B+1 2 X 4
. 41[110] + 45 [T - 5["7] Bk + 06%), k0 (16)
where
~ 3 9~ -
bs 3y O (17)

1 1 oo dx
/ X+ay / X2y / x+a§
1 1 o dx
o) =3 J0 2 [ 2 [ 42 )
J/x+b1 /x+b2 v/$<+b3
dx
In 1 +00
1) = iJ 2 3 [ 2 [ o 1n=L23 (20)
0 (x+ah) x+ay [x+ay [ x+ag
0 1
I(by) =3 2,3 (21)

pto dx
J , n=1,
0 ( x+bﬁ) v/x+b% v/x+b% v/x+b§
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1) = (22)
0 / x+a,1 /;(-*'8,2 / X+a3
1 =B I}(a)) + Io(b,) (23)
and
C(B+1) B(B+1)2 M
o) EHOL Ry jbl PLa(p)dp

(a-b7) (B+1) ) Gy o1
[[ 19(B+1) 2+3(C+1) (B+4)-B m].Io(al)- (B+2)gog Io(bl)]

B+1y4  20(B+1)
] [HT] s 5 (813939 b;bobg) I (b)) (24)
2C(B+1)2a1a2a3 . a%—b% 1
T [1 (a))-1 (bl)]I (ay)- oY [(2B+1)(B+1)- 5 B(C+1)]
2(b2+b2+b2) (B+1) 1 1 Bag. 2 DIHbasb2
F [(B +28-0) I (a, ) +(C+1) 1L (b 1)] [ 5] ——
- 2(B+1)[(C+1) 23:1)41“(1) )+(B228- €) : By (a1)]
3(H°)3 =g W1 n=1

The expression for T involves only the two parameters B, ¢ and the six

semiaxes ay a9, ag, bl’ b2, b3. Furthermore, the dyadic B corresponds to an
)

ellipsoid which is reciprocal to (2).
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3. THE INVERSE PROBLEM

The inverse problem we consider here asks for the determination of the
semiaxes ag, 89, ag, bl’ b2, b3 which specify the size and the thickness, and
the three Fuler angles ¢, 4, y that provide the orientation of the scatterer.
The form of (16) indicates that it is possible to use the method developed in
[4] to solve the present problem as well. The only difference is due to the
ellipsoidal shell that coats the soft scatterer, i.e. we need to determine bl’
by, by and 4, 6, y as in [4], as well as the semiaxes ay, Ay, ag.
Nevertheless, because of the confocality of Sa and Sb’ relations (3) can be

used to determine ays a9, in terms of aq as

2 2 2 2
2 2 2 2

Consequently, we only need to determine b1, b2, b3, ag and ¢, 4, y.
An expression that related ag with bl’ b2, b3 can be obtained by a single
measurement m of the leading approximation of ¢.
Indeed, if
B+1 2
n, = dr [_115] 27)

then, in view of (18), (19) and (23) we obtain

+00 dx
|

0 x+(b%~b§)+a§ v/x+(b%—b§)+a,§ V/x+a§

(28)

J+w dx A(B41) T

+ = " —
/m

0 V/x+b% V/x+b% v/x+b§ 0
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which furnishes ag as a function of bl’ b2, b3
ag = ag(by, by, bg). (29)
The existence of the function (29) is secured from the implicit function
theorem with the help of the relation [2]
1 2 3
218983 [11(a1)+11(a1)+11(a1)] =1 (30)
which connects the corresponding elliptic integrals.
Following the procedure described in [4] we excite the scatterer from the

six directions

kis k) k3
X5}
k! =
" V2
- XotXa
0 (31)
STn
xé+%i
ki = ——
6 ¢2 .

of an arbitrary coordinate system indicated with primed variables. If we

denote by X{s X9, Xg the coordinate system that fits the principal axes of the
target ellipsoid then there exists an orthogonal dyadic ; such that

r=Py (32)
where the components of ; are known trigonometric functions [4] of the three

unknown Euler angles ¢, 4, y.

Let
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ki Bk (33)

be the measured values of the second approximation of the Scattering
cross- section whenever the direction of excitation is given by ki,
i=1,2,3,4,5,6. A series of calculations similar to those in [4] leads to

the dyadic equation

B- — I =P.M.P* (34)

where I is the idemfactor, P* is the adjoint to P dyadic and
3 . - - - . -
M= T[' 2mxg @ %1 - mgXe @ Xy - 2m3§3®;53
+ (my+my-2my) (x1 ® x2+x2 ® xl)
+ (mgmg- 2mg) (x2 ® 53+x3 ® x2)
(mg+m- 2mg) (x3 ® x1+;$1 ® x3)] (35)

is the dyadic of measurements.

Since M is a real symmetric dyadic its normal form involves three real

eigenvalues and an orthogonal set of eigenvectors.

By virtue of (34), the eigenvectors of M form the dyadic P while its

eigenvalues A1, )\2, ,\3 are given by
9 124T ‘
Ay = b - —, n=1,"3. (36)

Mo

llence the square of the three semiaxes of the core of the scatterer are

provided by

9 12T
bn = An + _IT_I;)—’ n=1,2,3. (37)
In view of (29) T is a function of by, by and bg.  Therefore, (37) forms a

highly non-linear system of three equations for the three unknowns bys by, b3.

Once a numerical scheme furnishes the value of by, by and by, Formula (29)
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provides ag and (25), (26) give the values of a; and a5.  This procedure

identifies the size of the scatterer and the thickness of its core. The

Euler angles that give the orientation as well are obtained from the knowledge

of the dyadic ; exactly the same way as in [4].

We mention here that if the size and the orientation of the exterior
ellipsoid are known, then a single measurement of the leading term of the
scattering cross-section sufficies to identify the size of the core ellipsoid
[5]. This procedure, which forms a nondistructive method of evaluating the
size of the interior ellipsoid, is based on the Rayleigh approximation of a

soft ellipsoid
2

1
ol o~ 4I[I(1)(a,1)] (38)

and the corresponding approximation
2

B+1] (39)

o~ 47[]5
given by (16).

Eliminating Ioi(al) between (38) and (39) we obtain the relation

I (b,) = M[Bi i],

oo

which, for known ¢ and ¢', can be solved numerically to obtain by and then by

(40)

and b2 from
2 2 2

9 _ 2 .2
b = h{ + by (42)

as long as h2 and h3 are known from the knowledge of 3y a9, ag.
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G. DASSIOS, K. KIRIAKI AND V. KOSTOPOULOS §
Inverse thermoelastic Rayleigh scattering
by a rigid ellipsoid |

ABSTRACT

In this paper the inverse scattering problem for the rigid ellipsoid in linear
thermoelasticity is examined. We prove that six measurements of the far
field pattern in the low-frequency region are necessary in order to evaluate
the semiaxes of the ellipsoid as well as to fix the position of its principal

axes.

1. INTRODUCTION

The inverse scattering problem, as it is well known, is concerned with the
problem of determining the shape and/or the physical properties of the
scattering object from the knowledge of the scattered far-field data.

The mathematical methods used to investigate the inverse, as well as the
direct, scattering problems depend heavily on the frequency of the incident
vave [11,12].

In the low-frequency region there is the problem that low frequency data
does not provide enough information for a sharp resolution of the scattering
surface and the optimisation procedure requires a direct scattering problem to
be solved at each step of the iterative scheme for arriving at a solution.

In low frequencies Angell and Kleinman [1] described a method for finding the
dimensions and orientation of an ellipsoid from a constrained optimisation
problem for a functional defined in terms of the polarisability temsor
elements associated with the object. Dassios [5] solved the inverse

scattering problem for the acoustical soft ellipsoid based on the informations
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which the direct problem provides in the radiation region. The inverse

i scattering problem in linear elasticity was examined in [2].

In addressing oneself to the practical problem of reconstructing the shape
of an obstacle from far-field data, one is faced with problems of numerical
instability. The inverse scattering problem in general is ill-posed, in the

sense of Hadamard, and intrinsically nonlinear. So, the aim of the provided

methods for solving inverse scattering problems is to be relatively easy in
numerical implementation. A survey of the research done in this area can be

found in [3,4,13].

‘ | The inverse scattering problem which is considered in this paper is to
determine the semiaxes and to fix the orientation of a rigid ellipsoidal
scatterer embedded in an infinite, homogeneous, isotropic thermoelastic medium
from the knowledge of the far-field data, in a finite number of directions.

l In Section 2 we formulate the direct scattering problem and we give the
necessary results obtained in [7,8].

, In Section 3 we examine the inverse scattering problem for a rigid
ellipsoid in linear thermoelasticity. We shaow that the necessary
measurements in order to obtain all the information needed about the
ellipsoidal scatterer are six. This is a consequence of the simplicity of

' the expressions for the leading term of the angular scattering amplitudes in

low-frequency regions that allows for an exact solution of the corresponding

inverse problem. The nonlinearity of the problem, expected for inverse

problems, enters via the elliptic integrals, the second power of the values of
the semiaxes and the quadratic expressions of the components of the directions
| of incidence.

Finally, in Section 4 remarks for the stability of the numerical method

and a general discussion concerning our approach are presented.
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2. FORMULATION OF THE DIRECT SCATTERING PROBLEM

Let us assume that the solid ellipsoid

2 N
i f
. —5 ¢ 1, (<ag<ag<ay <o (1) |
2

1l MM
e

i
is embedded in an infinite, homogeneous and isotropic thermoelastic medium.
The isotropic thermoelastic material is characterised by the Lame
constants A,x, the mass density p the coefficient of thermal diffusivity k,
and the linear expansion coefficient a. The unified four-dimensional field
U(x) = (uy(z), uy(r), U3(£), 8(x)), (2)
where u(r) denotes the displacement and B8(r) the temperature field, specifies
the stationary thermoelastic state of the medium whenever it belongs to the

kernel of the time- independent Biot operator

N (uhd + pw2)13 + ()W | -9V
L(d,) = qrqV A+q (3)
In the above expression, 7 and 7 are coupling constants,
iw
q=— (4)

is the thermal analogue of the square of the wavenumber, » stands for the

angular frequency, which is suppressed through the harmonic dependence ¢ 10t

and In denotes the unit dyadic in n-dimensions. A convenient dimensionless

coupling constant is provided by the parameter

K
€=mﬁ W)

In the limit as 7 - 0+, » 2 0+, ¢ - 0+ the thermoelastic problem decouples to
the corresponding scattering problem in the classical theory of elasticity and
an independent heat conduction problem.

A general incident plane wave propagating in the direction k has the form

[7]
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3(r) = #'(0) + () + £() ©
where |
- ik g.g
&'(r) = ALk, p)e | ™
is the elastothermal plane wave of amplitude Al
. ik ﬂ.r
#(z) = K (ikyfok, iky)e (8)
is the thermoelastic plane wave of amplitude A2, and
. ikkr ‘
(1) = A(b,00e ¥ ©

is the transverse plane wave of amplitude AS and polarisation along the
direction ﬁ, orthogonal to the direction of propagation E. The factor ik, in
(8) has been added in order to secure analyticity of ?2 with respect to the
wave number. The amplitudes Al and AS have dimensions of length, while A2
has dimensions of length times temperature.

In consistency with physical reality, the wavenumbers kl’ k2 are chosen to
be those roots of the characteristic systems [7]

k% + k% = q(1+¢) + kg

22  _ 2 (10)
kiky = qkp
for which Imki >0, i=1,2. These conditions reflect the dissipative
character of the thermoelastic medium. The constants
, klwn
= - - (11)
1 k%_q’
ik27
(12)

By = ————
2 (-g) (e

furnish the appropriate factor in order for Ql and 92 to belong to the kernel

of L.  On the other hand, as ¢ - 0+, ﬂl -+ 0 and ﬂ2 -+ 0 and the system
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decozples im a materal way.
Iz classical elasticity, we kave the wave relatioxs
&= kp €y = kg (13)
waere kp and k_ desote the wvaveawsbers of the elastic loagitndinal 2ed

trassverse waves, aad

C2 _ A%?F c2 _ E (14)
P p* ST p

specify the corresponding pkase velocities.

In thermoelasticity. we decote the complex wavemumbers k; and k, by
B -
klzqe 1d1, vl>0, d1>0

. (15)
vhere Vq: Vo are the phase velocities of the elastothermal and thermoelastic
waves, respectively, and d1= cl2 determine the corresponding dissipation
coefficient. In the decoupled case, as

€ = 05

ky - kp (16)
=
by v = (159) [

The general scattered field U has a corresponding decomposition into
elastothermal, thermoelastic and transverse parts via the relations
n(r) = 1'(r) + 12(0) + 15(x) (17)
8(r) = 8'(r) + 8%(x) }
A set of ten asymptotic relations given by Kupradze express the radiation
conditions which secure the well-posedness of our scattering problem.
The unified total field is expressed through
¥(r) = &(x) + Ur) (18)

The boundary conditions for the rigid ellipsoid in thermoelasticity are
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described by

B(3.0)8(r) =0, £ €S, k=12, (19)

where the boundary differeatial operators Bk are expressed as follows:

(i) For the rigid ellipsoid at zero temperature

By(0.m) = = [ 57Ty (20)

(ii) For the therma®ly insulated rigid ellipsoid

(21)

i being the outward unit normal. The integral postulation of the above
problea is presented in [7]. The far-field behaviour of the scattered
elastic and thermal fields have been studied in [7] where the following six
normalised scattering awplitudes have been introduced.

As r + 40, the following asymptotic forms hold true

W@ - e 1 [EHG i+ 0] (22)

() = e [gE G o + 067 (23)

- a - a A A

) = 8502 + EDING 97 + 07 (o)

-d - - .
') = ¢ © [ (Eih 0 + 06 ) (29
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&) - ¢ 2 [ D 0w ) (26)
V2

shere g¥, m = 1,2 define the radial elastothermal (for m = 1) and the radial
thermoelastic (for m = 2) normalised scattering amplitude, gz, a=40, ¢ define
the angular normalised scattering amplitudes, and £", m = 1,2 define the
corresponding thermal normalised scattering amplitudes for the elastothermal
and thermoelastic waves respectively. The analytic expressions of the
thermoelastic scattering amplitudes are given in [T7].

In the theory of thermoelasticity, where the existence of dissipation
manifests itself via the nonvanishing imaginary parts of the wavenumbers k1
and k2, the unit of energy, which enters the definition of the scattering
cross-section, is not any longer invariant under translations in the direction
of propagation.

This is the reason for introducing in [7] a local determination of the

scattering cross-section which in general has the form
) 11 7000022 110 0 oSS (1Y 12 (1,
e o) eli(k)+eli(k)+eSS () vel2 (k)

MR ) L e
where e}i is the part of the unit of energy that corresponds to the

elastothermal incident wave,

e?ﬁ is the part of the unit energy that corresponds to the thermoeclastic
incident wave,

e?ﬁ is the part of the unit energy that corresponds to the transverse
incident wave,

e%ﬁ is the part of the unit of energy that corresponds to the

interaction between the elastothermal and thermoelastic incident

waves,
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m—

11 22 ss
sc? esc’ esc’ esc

scattered wave.

and e describe the corresponding parts of the energy of the

From the analytical expressions of the above quantities, given in [7], it

SS S
sc?

all the other quantities die out as r - +o. Therefore, the quantities

11 , 11 22 22 12
sc”e n’ esc’ & in? esc

scattering cross-section, which, as r -+ +w, has the asymptotic form
SS/1.
SO N

oS8 = 72,52
en  Ks(AY)

is easy to observe that only the terms e eS are independent of r, while

e and eiﬁ play no leading role in the definition of the

NERYY = w120
J 1R ¢ gl 9

In other words, the scattering cross-section is measured, to a first
approximation, by the only nondissipative part of the incident and scattered
wave which survives far away from the scattering region, i.e. the transverse
part.

For the above equivalent thermoelastic scattering cross-section o ~ oss,
an angular type scattering theorem as in classical elasticity [10] is

obtained, from which we have the scattering relation
ss _ 4z
e T | e DR SR + (DR ESED)] (29)
In low-frequency region the leading terms of the angular thermoelastic
scattering amplitudes for the two problems that will be examined in this paper

are given by [8]
S k NI ! I 2
8a =" T ¥ J {T u,(c )]ds(z ) + 0(k%), k-+0, a=46,4 (30)

where for the case of a rigid ellipsoid u  is the solution of the following
boundary value problem
T 2y o) + (1-7 W (o) =0, »>q (31)
HO(E) = 0, P = (32)
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1, 4251\1 st 1
_110(_I_‘_)=(A '*'Aﬂz)k*Ah*'O(;), p - +o

(33)

which can be solved by introducing a fictitious potential in the Papkovich

representation and then use the freedom it provides to decompose the general

boundary condition into two simpler ones. Following the method introduced in

[6] we obtain, after very long calculatious, the solution

u,(7) = [(Al + A%B)k + Asﬁ] .

3| (D) ()L ()

%1 -
: 2
m=1 (rp-l)amIT-(rp+1)Ié
(o -af) ) -
- (1) p® |(W+A%8))iet%)] .
/ o2 / 2
3 %@, L

. X
m=1 (pz-a%+a%)[(rg-1)ale-(r§+1)Ig]

where

Il( ) du
D=l
0
0 ek [ s
+00 du
I3 (p) =J

p (u2 2+02 uk- a%+a% J/uz a%+a§

(34)

(35)

(36)
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- .

I =1l(e), I}=10e), n=1,23 (37)

and p is the outward unit normal on the ellipsoid.

The expressions of the scattering amplitudes involve the integral

JP:"1 T u,(r) ds(r)

where
T () = 2/4;-"20(;) * AéV-uo(z) + u.;zX(quo(z)) (38)
provides the traction field on the surface of the ellipsoid. In view of the

potential integral

i 4 (39)
= 4r
prey [ 22
and a series of vector and dyadic calculations we obtain
g (AA%By)k +4%
m - 3 X
T =-8 2 2 2 1° 4
Jp:dl HO(L)dS(L) " m=1 (Tp-l)amIT- (Tp+1)10 " ( 0)

Introducing (40) into Eq. (30) we conclude that the angular amplitudes assume
the form
ALea2p, )k +ASh
3 [(A™ ﬂ2) m m] “a

g,o _ 5
gh(r,k) = 2ik % 8.x ) + 0(k%) 41
ol n=1 (73-1)(1%1'}(734)1}) (&) = 01 ()

5 [(AA%B)k +4% ]

S(r,k) = 2ik I . 0(k> 49
g¢(£ b= m=1 (T%—l)ailT'(T§+1)Ié (dxy) + 00 (42)

A~ A

So from Eq. (28) by substitution of the angular scattering amplitudes and
supposing only S-wave incidence we conclude that
sor 3 [bn 2

S by 2
) L—n] + 0(k%) (43)
0

o8




where b = (by,by,b5), b.k =0 and 7
2 1
Lg = (Tg-l)ailg(al) - (Tpfrl)I0 () n=1,2.3 (44)

3. THE INVERSE SCATTERING PROBLEM

We assume that the directions of thelprincipal axes of the ellipsoid described
by Eq. (1) coincide with the unit vectors gi of the orthogonal cartesian
system.

‘We choose six arbitrary directions of incidence of transverse waves.

This choice of S-waves is dictated by the above discussion about the
dissipation of all but e?ﬁ and ezi in the far field region.

In the sequel we will see why six measurements are enough to specify the
three semiaxes as well as the three Euler angles that fix the position of the
principal axes of the ellipsoid.

For S-incidence along the gydirection we can evaluate the angular
thermoelastic scattering amplitudes, so that Eqs. (28, 29, 43) provide the
thermoelastic scattering cross-section.

Let the six arbitrary directions of incidence be

K'.=x'., j=1,2,3

b R

- 1 ~ .
Ky = — (o)
- 1 ~ -
ky = — (xy+x3)

X 1. . (45)
k'5 = ;5 (Ké*Ki)

vhere {xi,xé ,gé} form an orthonormal set of an arbitrarily chosen cartesian
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system whose origin coincides with the centroid of the ellipsoid. In the
sequel with primes we will refer to the arbitrarily chosen system and without

primes to the system determined by the principal axes of the ellipsoid.

1 ' Let P be the orthogonal matrix that transforms (by rotation) the system

5{,;&,5& to the system X{X9,Xg which determines the principal directions of

the ellipsoid, that is we have the relation
r="Pr'. (46)
The knowledge of the matrix P will provide the orientation of the ellipsoid.

The elements Pi' of P are expressed via the three Euler angles 4, 8, y by the

J
relations
; P11 =C0S § cos y - cos f sin ¢ sin y
P12 = sin § cos y + cos @ cos ¢ sin y
| ‘ P13 = sin d sin y
P21 =-c0s ¢ siny - cos @ sin § cos y

P22 = -sin ¢ sin y +cos 6 cos § cos y (47)

-

P23 = sin 4 cos y
P31 = sin § sin ¢
P32 = -sin 8 cos ¢

e ——

P33 = cos

Since the relation (43) is referred to the principal axes system it follows

that (43) holds true after the transformation described by the matrix P, has

becn applied to the directions of polarisation b', that is

by =Phy =1, (48)
So, the six measurements, in view of Eq. (43), yield
32T -~ T N oA .
mj = "'3_'(hj) A bj, J = 1,-.-,6 (49)
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where

Aik = 0, i# k
(50)
b oL i=k=1,23
ik = i
o
From Eqs. (48, 49) we conclude that
327 ~ qvpv s
n; = (b)) "P'A P B} (51)

Substituting Eq. (45) in Eq. (51) we obtain the following system of equations

for the unknown quantities ¢,0,y,a1,a2,a3

2
3 Pni 3m1 _
n§1 Eﬁ—: §2—ﬂ' , 1= 1,2,3
70
(52)
P.+P )% 3
3 ( ni nJ) M o
o T = 16r (i,j,k) = {(1:2,4)’(2’3,5)7(3a1’6)}
n= 0
From Egs. (52) we conclude that
3 Ppifny  3Cmemi-my)
n§1 0 - 327 (53)
0
where (i,j,k) as in Eq. (52).
So, we have the matrix relation
PLAD =N (54)

where M is a real symmetric matrix with known, from the six measurements,

elements given by the relations

3m
My =g 1= 1,23
(55)
3(2mk-mi-mj)
Mis = M55 = == —
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(i,j,k) as in Eq. (52).

‘vom Eq. (54) we conclude that

N,

A=PHP (56)
Since P is an orthogonal matrix, M is a real symmetric one, and A, from Eq.

(50), is a diagonal matrix it follows that the eigenvalues of M are given by

1
A==, n=1,23 (57)
L0

while the columns of PT are the corresponding orthonormal eigenvectors. So,

the eigenvectors of the known matrix M specify the orientation of the
ellipsoid. In order to evaluate the semiaxes of the ellipsoid we apply the
following procedure.

From Eq. (57) we have that
1

Lt = n=1,2,3 58)
0 Tn> ’ (
From Eq. (44) and the well-known formula
3
2:n _ 1
n§1 a Ly = I0

which relates the elliptic integrals we derive that

1 3 1
b T M

(T§+2) n=t ‘n° (59)

1
Io(al) == 2

From Eqs. (44, 57) we conclude that

1 1 T§+1

2
aTi(ay) = =M, n=1,23 (60)

1
(Tg-l) {X; ] 2(T§+2) i=1 X;} 1

where Mo’ Mn are known quantities.

In order to bring the elliptic integral Ié to its canonical form we
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perform the transformation

aZ- a2
193 4
X = 7 - a (61)
and we conclude in standard notation of elliptic integrals that
Sin¢ d

1,y __ 1.2 2-1/2 0 t
Tolag) = - (ay-2y) J0 5 [ 2.2
v/l-t vll—t sin 2

- - (ag-a) /PR (4,0 (62)
vhere

(63)

In order to bring the elliptic integral of the second kind Ii to its canonical
form E(4,,a,), we perforn the same as above tramsformation, while for the

integral I% we conclude
. 2
S1n¢0 t7dt
0 v/l-tz 1-t2sin2a0

Finally after some algebraic calculations we conclude that

- - (ak- a§)3/ 21l (a,) (64)

1la) = (a3ad)3/? ST-:T%[E(%’%)-F(%’%)] (65)
If we introduce the notation
) a3
StTap ST (66)

use the relations
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‘ g Ith !

| =l T 313933
' | 3

2 m_ +1
3 n§1 a, I1 = I0

and the equations (62) and (64) we conclude the relations

2.2 2 2
3182M1+82M2+81M3 2-1/2 3
G URRLCEN R (67)
2.2 2 2
s1s2M1+s2M2+s1M3 21j2, e
N A G LTVEWE (W]

= Ay (known quantity) (68)

where in view of (66)

IR | 2,1/2
§, = sin “(1-s5) /
(69)
2
. s
’ a, = sin (Ijgi)
I 2

! In order to solve numerically the nonlinear system given by equations (67, 68)

ve use the same iterative scheme as in [2].

4. DISCUSSION
In this paper the inverse scattering problem of linear thermoelasticity for a
rigid ellipsoid in the low frequency region is examined. We use information
from the solution of the direct thermoelastic scattering problem and propose a
method for the corresponding inverse.

In order to evaluate the dimensional characteristics and the orientation

of the scatterer we need six measurements of the far-field data in the




low-frequency region under the condition that we have a knowledge of the shape
and the boundary a priori conditions. This type of approach of the inverse
problem has been proposed in [5]. VWith a similar technique the scattering
problem in linear elasticity has been solved in [2].

If the boundary conditions on the surface of the scatterer alter the above
approach cen also be used. Obviously from the solution of the direct problem
we obtain a highly nonlinear system which cannot be solved by a simple and
rapidly convergent iterative scheme.

Looking closer at the results contained in this work, one can see no basic
difference if we consider a thermally insulated rigid scatterer or a rigid
scatterer at zero temperature. In other words, the results are independent
of the temperature boundary condition on the surfact of the rigid scatterer.

This is a reflection of the fact that thermal effects do not enter the
Rayleigh approximation of the transverse field in the radiation zone.

The corresponding temperature field appeared in the low-frequency
approximations of order higher than the leading one. Even in these higher
order approximations the dependence on the temperature is implicit through its

effects on the particular form of the displacement field.
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A.FARIDANI

Reconstructing from efficiently sampled
data in parallel-beam computed
tomography

1. INTRODUCTION

In computed tomography (CI) an object is exposed to radiation shich is
measured after passing throrgh this object. Froa these measurements a
certain fonction f, characterizing the interactioa of the object with the
radiation is reconstructed. This functica represents an 'image' of the
interior of the object.

In diagnostic radiology, the classical application of (T, X-rays are used
as radiation. The measurements are then line integrals of the X-ray
absorption coefficient f. This leads to the mathematical problea of
reconstructing a function from its line integrals. In two dimensions tihus
scans the inversion of the Radon transfora.

In this paper we examine how many line integrals have to be measured in
order to achieve a certain accuracy and resolution. We confine our
investigation to the so-called parallel-beam sampling geometry. First we
describe the application of multidimensional sampling theory to sampling the
two-dimensional Radon transform. This approach was first taken by Lindgren
and Rattey [11, 16] and further developed by Natterer [12]. It leads to
sampling schemes which need a minimal amount of data to ensurc that the Radon
transform Rf is determined by the measured values up to a small error.

The question of how to achieve good reconstructions from such data has
been studied by Kruse [9] who obtained error estimates for the filtered
backprojection algorithm, the most popular reconstruction method. The main

purpose of this paper is to derive estimates extending Kruse's results and to
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use this theory to obtain improved reconstructions. The paper is organized

as folloxs:
In the remainder of this section we give a brief description of the Radon
transform and its inversion. In the next section we derive a version of

a4 A

Petersea and Middleton's sampling theorem [14] suitable for sampling functions

defined on [0,2x]n1 x 1?2_ Our proof differs from the approach taken in [12,
p-64] and is based on a Poisson summation formula derived in [9].

Furthermore we characterize the class of sampling schemes to which the
sampling theorem is applicable and which are suitable for saapling the
tvo-dimensional Radon transform in practical applications. We call these
scheses 'admissible sampling lattices’. Application of the sampling theorem
leads to sampling conditions which have to be satisfied by a sampling scheme.
The results of {i1, 12, 16] for the usually employed standard lattice and the
so-called *interlaced lattice' are derived. The interlaced lattice, first
suggested for sampling the Radon transforam by Cormack [2], requires a minimal
amcunt of data. Sampling conditions for the standard lattice were already
derived in different ways by Bracewell [1], and by Crowther, De Rosier and
Klug [3].

To clarify the question of acc¢uracy of reconstructions, we give a detailed
error analysis for a particular reconstruction method, the filtered
backprojection algorithm. In section 3 we describe the implementation of the
algorithm for data sampled on an admissible sampling lattice. In the
following section we derive estimates for the reconstruction error. We
extend the results of [9] by taking into account the influence of a certain
interpolation step occuring in the algorithm. This interpolation was

neglected in [9]. It turns out that it is critical when the interlaced
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lattice is used, but that good reconstructions can be achieved with a sensible

choice of the parameters of the algorithm.

The proof of the estimates already derived by Kruse is closely related to
the proof of the sampling theorem given in section 2. This indicates that
the filtered backprojection algorithm might be more suitable than other
reconstruction methods whken minimal sampling schemes like the interlaced
lattice are used.

The last section is devoted to numerical experiments and their discussion
in the light of the results of section 4. It turns out that the theoretical
results explain the imminent numerical difficulties and show the way to obtain
good reconstructions, thereby improving previous numerical results.

In the following we give a brief introduction to the Radon transform and
its inversion and also introduce some notation.

Let R, N, Z denote the real numbers, natural numbers, and integers,
respectively. Furthermore let @ denote the unit disk in R? and T the
interval [0,2r). For ¢ € T the variable @ vwill always derote the unit vector
(cos ¢,sin é)T.

The Radon transform of a function f € CJ(®) is given by

RE(4, ) =f [£(s0+t6")dt, €T, s ek (1)

For a survey on the mathematical properties of the Radon transform and its
many applications see e.g. [4, 6, 7, 8, 12].

As we will see in Theorem 1.1 below, the Radon transform is closely
related to the Fourier transform. The Fourier transform of a function F €
L (R") is given by

P(e) = (20) /2 J P Ix-£gy @)
R

x;{; denotes the dot product. The Fourier transform can be

n
i=1 i

where x.{ = ¥
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extended to the space of tempered distributions. Its inverse is given by the

formula
F(x) = F(-x). 3)
The convolution f*g of two L,-functions is given by f*g(x) = j f(y)g(x-y)dy.
g
Ke have
()" (9) = 20" (©)8(9)- ()

In case of the two-dimensional Radon transform the Fourier transform with
respect to the second variable alone is also of interest. It is defined by
(&) 2(4,0) = (20) /2 JR RE(4,s)¢ 1050s 5)
where 2 indicates that the Fourier transform is taken with respect to the
second variable only.
The Radon transform is closely related to the Fourier transform by means
of the following theorenm:
Theorem 1.1
Let f € C}(2). Then
(RE) 2(4,0) = yEE (o). ()
Proof: Replace Rf(¢,s) in (5) by the righthand-side of (1) and use the
definition (2) of the Fourier transform. o
Taking a two-dimensional inverse Fourier transform on both sides of (6)

yields immediately an inversion formula for Rf:

£ . el fe)el*dae
I

2 - .
= @271 JOTJZ o] (068)eX7-dodg
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Sy m- -

* m————

1 27 - .
=-2-(2:)-IJO r o1 (a8)e ™ %a0dg
-0

-

(21 3/2 jz' [ 10160 20,00 ™ baas
(7

1 27
- 1 jo a(4-x-6)d¢

where q(4,s) = Hﬁg Rf(4,s), and H denotes the Hilbert transform acting on the
second variable. For other types of inversion formulas see e.g. [12, Chapter
11].

It is readily seen from (7) that an exact inversion of the Radon transform
is unstable because of the amplificatior of high frequencies due to the filter
o] in the inner integral of (7). More suitable for numerical inversion are
approximate inversion formulas of the following kind, where this instability
is removed by means of a suitable low-pass filter:

Theorem 1.2

Let szkz -+ R be a radially symmetric low-pass filter with cut-off

frequency b, i.e.
W) = (0 p(lel/b)
with 0 < ¥(s) < 1 and ¢(¢) = 0 for |g] > 1. Define Wy, by

- 1
w () = 520 2ol g(]0] /b)
and let € C20).  Then
27
WH(x) = JO JR wy (.0 S)RE (4,8 dsdg. 8)

Proof: Proceeding as above we obtain

A ORN NGHGIRT
R2
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12 - .
=EL;f|qumﬂm&“%ms

=ﬁrkjﬁmagﬁwﬁmm¢

where we have used (4). o

This kind of approximate inversion formulas goes back to [19], and
provides the basis for the filtered backprojection reconstruction algorithm
[15], which we will describe in section 3. There are many other methods for
the numerical inversion of the Radon transform. For a survey of such
reconstruction methods see [12, Chapter V].

In tomography one has to compute approximations to f from measurements of
Rf. The question arises, how many measurements are needed and at which
points (¢,s) we should sample Rf(¢,s). Therefore we now discuss the relevant

sampling theorem.

2. SAMPLING ON [0,2¢) L x R 2
Since Rf(¢,s) is 2r-periodic in the first variable, we need a sampling theorem
for functions which are 2a-periodic in some of their variables. They can be
1,12

n
regarded as functions on T , where T denotes the interval [0,27). One

essential tool for deriving the sampling theorem is the Fourier transform on
n
2

ny . ) . L)
T * x R “ which is defined as follows: Let S denote the class of

(- functions of Ny + Iy variables which are 2z-periodic in their first ny

n
variables and in Cz(R 2) with respect to the last n, variables. The Fourier

, Ml coaatl o2 ,
transform of a function G € S is a function G:Z © x R ©“ = C given by

73




; - (nyimy) /2 ~ig.s - ik.4
G(k,0) = (2 6(4,s)e 10-S¢ IK-9454
(k,0) = (29) JT,,I jl,,2 (8,9)¢ 1% *-4asag

n n n n
with (ko) €21 xR 2 and (4,5) € T L xR 2.

o V) . i1 ot
Let LI(Z x R“) denote the space of all functions g =2 ~ xR “ - C for
which
) Jnldhﬁmﬁ<w
N p 2
keZ
)
The inverse Fourier transform of a function g € Ll(Z x R ©) is given by
. n
i g: T L.r2.0¢,

| - - (n,+n,) /2
[ g(4,s) = (27) (ry#g)]

2 J 1 g(k, a)eM Sdo ! ik.¢.
ny g 2
keZ

] ny,0g e
For functions G € S we have G = G.

For (k,0) € Z " xR “ and (4,s) € T ° x R © ve define the dot product in
the natural way, i.e.
4 Ry )

(k,0).(4,8) = & kg, + T s.0o.
i=1 JlJJ

As to the set of points (¢,s), at which functions are sampled, we restrict
our analysis to the so-called sampling lattices:
Definition 2.1

We call a non-singular (ny+ny,n +n,)-matrix W feasible [9] for sampling on

N Ny . i n . i . .
T xR*® if 27¢” € W2~ for i = 1,...,0q, where the e~ are canonical unit
N +n
vectors of R ' 2, i.e. e; 6 The set
n +N n
1772 2
L= (¥Z )ﬂ(T R %)

n1+n2 .
= {Wk|k € Z y(Wk); €T, i=1,...,n}
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is called the sampling lattice generated by W. The set

V-T2l 2 o Tkkez L Y
is called the dual lattice with respect to L.
The simplest example for a sampling lattice is the so-called standard
lattice on T x R. It is generated by a diagonal (2,2)-matrix with diagonal

(27/P,h) where P € N, h > 0 and is equal to

é 27j
LS:={[S]eTxR:¢=—P—,s=h£;j,ZeZ,0_<j<P]. )

n1+n2

The condition for feasibility means that WZ is 2z-periodic in the

n n
first ny variables and implies that the dual lattice is a subset of Z 1, p?

which is the domain of the Fourier transform of functions defined on
T111 x Il2.

A given sampling lattice does not uniquely determine the generating matrix
W. It does determine, however, |det W| as well as the dual lattice. The

dual lattice L' can be characterized in terms of L by

f ol
I'={ueZ" xR°WW e Lu.v/(27) € Z}.
For a given lattice L we define the lattice constant c; by

- (ng+n,)/2
¢ = (@) b Y |det W]

where ¥ is any feasible matrix generating L.
A lattice must satisfy a certain requirement for its density of sampling
points in order to be a suitable lattice for sampling a given function g.

The following theorem shows that this density requirement is determined by the

n n ~
size and shape of a set K ¢ Z 14 R 2 in which the Fouier transform g is
concentrated in the Ll-sense: The translates of K with respect to the dual
lattice must be mutually disjoint. Note that this requirement of sparsity

for the points of the dual lattice corresponds to a density requirement for
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the points of the lattice itself.
Theorea 2.2 °

ng o on 1 PR Y
Let L be a sampling lattice for T * x R “ and K ¢.Z = x R © such that the

n, n
sets K + u, u € L' are mutually disjoint. Let g€ S 1* 2 and

S0 = ¢ 3 Xy (x- V)g(v)

where X is the characteristic function of K. Then

- (n,+n,)/2
w el T znf

(k,,)gxlé(k,o)ldv- (10)
) 1
(4,s)€T “xR keZ

The theorem is a modified version of the sampling theorem of Petersen and
Middleton [14]. It shows that the function g is essentially determined by
its valnes on a sampling lattice L, if |é(k,a)| is small outside a set K
satisfying the conditions of the theorem. The key for the proof of the
theorem as well as for proving some of the error estimates for the filtered
backprojection algorithm to be presented later is the following lemma:

Lemma 2.3

n n n,,Nn - )|} n
et L be a sampling lattice for T1 xR %, 6 ¢S U2 Fel (2! xR D),

- n1 n2
and F = (F)~ Then for every y € T * x R

¢, VEL F(y-v)6(v) =

- (ny+09) /2

= (27) ) J nzﬁ(k,a) 2 6((k,0)-)el ®D)Yge. (11

n
kez 1 R
Proof:  Replace F(y-v) on the lefthand side of (11) by
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- (nq+n,) /2 . s (k.o). (v-v
@) L 27y ) j n F(k,o)el (:9)- (V) 4g

kez 1 R
and use the Poisson summation formula:
¢ % e i)y E 6((k0)-) (12)
L vel ™) uel!
which is proved in [9].
0

Proof of Theorem 2.2: Using the lemma with F = ;K’ we obtain
| (58-8) (45) |

= l(2w)'(n1+n2)/2 v J ) [XK(k,U) 5 é((k,a)-u)-é(k,a)]eik'¢ei”'sda
e “r 2 uel!
keZ
- 9 . . .
= ‘(27) (n]_+n2)/ 5 ¥ g((k,o_)_u)elk.qﬁellf.sdo_

(k,0) € K ueLl',u#0

) (27)'(n1+n2)/2 . J é(k,a)eik‘¢eia's

de
n n
(k,o) €21 x RAK

-(n1+n2)/2

< 2(2) ) J gk, o) |do

n n
(ko) €2 1 x R 2K

where we have used the fact that the sets K + u,u € L' are -.<tually disjoint,
and therefore

5 Dolg(kowlles 5 | lg(k,o)ldo.
(k,0) € "K ueL',u#0 f1xf2\x
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In the following we apply Theorem 2.2 to the sampling of the Radon

transform on T x R.  In practice one wants to measure Rf(4,s) for a
collection of different 'views', where each view consists of a collection of
measurements with ¢ fixed. Since this corresponds to measuring the line
integrals for sets of parallel lines, this sampling geometry is called
parallel-beam geometry. Suitable sampling lattices for this geometry should
contain more than one element (4,s) for each occurring value of 4. We call
lattices with this property, i.e. with the property
(¢,s) e L2 3s' #s: (d,s') €L

admissible sampling lattices. The following lemma characterizes these
lattices. It turns out that only a finite number LM of different values of §
occurs and that for fixed ¢ we get a set of equidistant values of s, where the
distance d between two nearest neighbours does not depend on 4.
Lemma 2.4.

Let L be an admissible sampling lattice for T x R.  Then there exists

d> 0 and L,M,N € N with 0 < N < M and gcd(M,N) = 1 such that the matrix
2r 22N

T TIM
W(d,L,M,N) =
(4,5 18) 0 d/M

generates L.  Hence L is equal to the set

L(d,L,M,N)

= {(¢j’sj€) eT xR ¢j = g%%,sjg = d(€+6j/M) with 6j eN
smhm%(mjﬂMGZ;j=QHWMJ;Zeﬂ. (13)
Proof: Consider an integer 2 x 2 matrix U with |det U] = 1.  Then uz? = 7
and the lattices generated by a matrix W and by WU coincide. If ¥ is
feasible there exists an integer vector (Ll,LQ)T such that

WLyt = (27,007, There exists an integer matrix U with |det U] = 1 such
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o n e v e e

that U(L,0)T = (L;,Ly)" where L = ged(Ly,Ly). Hence the first colum of WU
is equal to (Zx/L,O)T. Since L is admissible the ratio of the elements of

the first row of WU is a rational number. Hence (WU);, can be written as

27 N
TH with gcd(M,N) = 1.  Changing N by a multiple of M does not chance WUZz.

Hence N can be chosen such that 0 < N < [M]-1. Since replacing N by -N gives
the same new lattice as replacement of N by M - N, it is readily seen that

allowing for negative values of d,L,M does not yield further lattices. o

Figure 1: The set K (7,b)

In order to apply Theorem 2.2 to the Radon transform Rf of a function f we
have to determine a suitable set K such that the righthandside of (10) is

small. This has been done by Lindgren and Rattey [11, 16] who obtained the

set

1
Ky(75b) = {(k,0) € Z xR | |o| <D,|k| < = max(|o],(1-7)b)}  (14)

which is shown in Figure 1.
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Here b plays the role of an essential band-width of f in the sense that

otfb) = | HECO1dE

is sufficiently small. 7 is an auxiliary parameter between 0 and 1 and

usually chosen very close to 1. The following rigorous estimate was given by
Natterer [12, p. 73]:
Theorem 2.5

Let f € G)(2). Then

-1 ~ 8
. B j 1B koe) lde < 27 g (0)+1El, 1(7,D)
(k,0) € Z x R\ K (7,b)
where 5(r,b) satisfies an estimate
0 ¢ 5(r,b) < 6()e (M
with constants C(7),A(r) > O.

According to the last two theorems the procedure of determining
appropgiate sampling lattices is as follows: Use a-priori information to
determine a value of b for which eo(f,b) is small. Choose 7 close to one
(e.g. 0.99) and look for lattices L such that the sets Ko(r,b) +u, u€lL'are
mutually disjoint.

If additional information about f is available it may be possible to
replace Ko(r,b) by a smaller set. For example if f is radially symmetric
ﬁ?(k,a) = 0 for k # 0, and KO(T,b) can be replaced by the much smaller set
i(b) = {(0,0):]o] < b}. This of course greatly reduces the necessary amount
of measurements. In the following we will assume that the only available
a-priori information about f is the essential band-width b and therefore
alvays work with KO(T,b).

For example, the standard lattice Lg given in (9) is identical with

L(h,P,1,0) of Lemma 2.4. The dual lattice Lé is therefore generated by the
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mLrix
2:%(s,P,1,0) T = [5 21‘;&]_
Tke sets io(r,b) # N, 8 € Lg are motually disjoiat MEP > 2bfr anéd b < zfb.
Sizce the Radon traasform satisfies the relation
Rf(¢+7.-5) = Ri(4.5) (15)

it is advantageoxs to choose P ever, say P =2p. p e K. Ther
RE(22(3:p)/(2p) k) = RE(253/(2p).-h(). so that wec omly have to sample for
0<j<p.

Applyving Theoress 2.2 and 2.5 vields the well-knoxn sawpling coaditions
p > bf7 and h < z/b for the stardard lattice:
Theorem 2.6

Let f € C:(Q) and Ls(h,p) := L(h,2p,1.0) be the standard lattice with
p>b/7and h < z/b. Then

8
sup |S; RE-Rf] < — ¢ _(f.b) + [iffl; n(,b)-
(6,5)eTk Vs <37 SlfD) Ly )

The standard lattice is not the most efficient lattice suitable for
sampling Rf.  Lindgren and Rattey [11,16] found that a sampling lattice first
suggested by Cormack [2] which needs only half as many samples satisfies the

conditions of the theorems. This so-called 'interlaced lattice' contains the

21
sampling points (¢j,sj£) = [—55, 2h£+h6j], j=0,...,2p-1, £ € 7 shere

=2
n

. _ft  jodd
j mod 2 = {0 J even

and is equal to L(2h,p,2,1) =: LI(h,p). ¥e obtain the following conditions
on p and h:

Theorem 2.7
Let f € cz(n) and Ly(h,p) be the sampling lattice L(2h,p,2,1) defined in
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If eitker
zf(2b) < b < xfb asd p > (bemax(xfh-b, {I-7)b)) /7 (16)

or

h < z/(2b) amd p > bj7. (17)
tkea

8
sap _|S; Rf-Kfj< — ¢ (£.b)={fR n(7.b).

Proof: The sets Ko(7=b) 0, 0E L; are mntnally disjoint if and oaly if the
zbove conditions on p aad h are satisfied The estieate folloxs agzin frea
Theoress 2.2 and 2.5.
2

¥e see that the interlaced lattice has a spacing of Zh between adjacent
samples in the s-variable and needs only a slightly increased value of p. If
p is even the values Rf(éj,sjf} for j > p are redundant because of (15). 1In
this case the interlaced laitice is neariy twice as efficient as the standard
lattice. If p is o-.d the data for j > p are not redundant and we obtain the
same data as from the standard lattice.

¥hile the theorem shows that Rf is determined by its values on the
interlaced lattice, it is not immediately clear, how good reconstructions of f
can be obtained from these dava. The remainder of this paper is devoted to

this question.

3 THE FILTERED BACKPROJECTION ALGORITIM
In this section we describe one of the standard reconstruction methods, the
filtered backprojection algorithm [15] and its discrete implementation for

data sampled on an admissible sampling lattice. The algorithm can be
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regarded as a cosputer implemeatation of eq. (8) whichk read
2x
K *(x) = jo L sy (x-8-S)RE(4.5)dsdd, 0= (cos 4,sin .;)T_

So the goal is to obtain an accurate reconstruction of ¥, *f instead of f
itself. The cut-off frequency b controls the accuracy with which Wb*f
approximates f. If it is greater or equal to the essential band-width of
f,Hh*f %il1 be very close to f. Therefore we usually choose the cut-off
frequency equal to the essential band-width. There is also 2 direct
correspondence betseen the resolution of the‘i-age represeated by Eb*f and the
cot-off frequency b: the smallest details discernible in the image have a
size of roughiy 2z/b.

Sampling Rf on an admissible sampling lattice L = L(d.L.¥,N) permits to

discretize the integrals by means of the trapezoidal rule:

2zd IN-1 .
W) =~y BT s (x0o5: RE(S555,) (18)

j=0 £eZ
ex5. %), 8 in 6T, 4o
sje = d( * j/ ): j - (COS éj,SID éj) ] 3° ™M
where we have used (13). A computer implementation based on (18) demands the
computation of the discretized convolution integral
(p.,x.8.)=d 2 x.0.-s-
05(45x-65) dﬂEZ Wy (x-0555)RE(45,55)
for all points x where the image is computed and all j,0 < j < LM - 1. Since

-this would be computationally too demanding, we compute only Qj(¢j,Hk), with

1 1
>0, keZ - <k <y and obtain an approximation for Qj(dj,x.ﬂj) by

linear interpolation with stepsize H. This means that we approximate
QJ(dJ:xoj) by
. . N R = U . . l {
I"QJ((’JaX 03) E B"(x HJ "k)ﬂj(éj, k)

vhere B" is given by

_ [1-]s/H] if |s| <N
By(s) = { AR LR
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In the folloving we will alwvays assume that H is chosen such that

zfb>H = ;i with m € N. (19)
" A short computation shoxs that because of d/(H¥) € N

IHQ (6 x.8. ) = d E (Inub)(t 8- sjt)lr(p 8)
This mears, that the effect of the interpolation can be expressed by replacing

%), ¥ith the interpolated kernel
I (s) = T B, (s-Hk)w (HK).
() = I, By(s- M),

Its Fourier transform is given by

(Iy¥p) (o)

114
(2:)1/21r13“(a) ; ‘.b[ ; 2—

sinc (Ha/2) 2 “b[ - Eff]

sin s
S

z
Hence Iywp is not bandlimited. For lo] < jj we have
- -2 -
(Iygsp) " (o) = sinc™(Ho/2)wy (o)

since we assumed that b < z/H. Therefore we can split IH"b in a bandlimited

where sinc(s) =

part Wy vith band-width b and Fourier transform ;Lo(a) = sincz(ﬂa/2);b(a),
and a high-frequency part i with

- 27¢ 0 lo] < =/l
wHI(a) = sinc (HU/2) - 3 "b[” - —ﬁ—] {(Iﬂwb)‘(a) o] > #/II.

This means that the algorithm computes the function

27d 1¥-1
fR(x) =N j§0 ) (I"wb)(x jg)Rf(éj:Sjg)

21d LM'

4 ERROR ESTIMATES

From equation (20) we see that the filtered backprojection algorithm computes
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a function fy(x) which approximates ¥, *f(x) and can be decomposed as
fg(x) = fm(x) + fyy(x) shere

£14(x) s (x-8:-s: RE( ) (21)
x) = 2 3 w(x-8-s..)RE(g-,s- 21

LO( ¥ | =0 £ez LOV*-"3 3L R 14

1 and fy;(x) is obtained by replacing ;g by wyy. We will show that fi,

coincides with ¥, *f up to a small error and that [fy;(x)| can be kept small by

a proper implementation of the algorithm. From Theorem 1.2 we see that

2%
Jo L upo(x-8-S)RE(4,5)ds dg = ¥y *E(x)

where W (€) = 2FF| €] uyg(i€l).  Mence
"'LO(X) = (Gu*“'b) (x) (22)
with the additional low-pass filter GH given by

- -1.. 2
Gy(6) = {(2r) s’ g1/ 1l
J£l>b

compare [12, Theorem V.1.2].  Hence f;,(x) can be regarded as approximattion
* for Wy *f(x) = G*¥ *f(x). The discrepancy G *¥ *f(x)-¥ *f(x) can be made
arbitrarily small by choosing a sufficiently small H.

We can use the following slightly modified result of Kruse [9, Theorem
6.1] to estimate the error [f;,(.)-6*W *{(x)|:
Theorenm 4.1

Let £ € CJ(2),8(¢,8) := RE(4,3), Wys¥y, as in Theorem 1.2, L = L(d,L,¥,N)
an admissible sampling lattice for T x R as given in (13), and K ¢ Z x R such

that the sets K + u,u € L' are mutually disjoint. Then

27d IM-1

™ jEO iy Vo005 85008(455850) = W) + e (x) + ep(x)  (29)

where
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b -
5= E g(k,o)|d
Iyl $ 37 2 j(m lstalde

ley ()] < 3%.- RACOTI S PR X
with J; the Bessel function of the first kind of order k.
Applying Theorem 4.1 with ¥, and v, replaced by G“*Hb and wpg,
respectively, vields the desired estimate for fLO:
Corollary 4.2
Let f, L,K as in Theorem 4.1, f o as in (21) and g as in (22). Then
fiox) = ¥ o f(x) + ey + e
vhere e and ey satisfy the estimates of Theorem 4.1.

The sampling conditions of Theorem 4.1 and the estimate for e, correspond
directly to the hypothesis and estimate of the sampling Theorem 2.2. This
indicates that the filtered backprojection algorithm is ideally suited to
exploit the advantages of minimal sampling lattices. The proof of Theorem
4.1 given below employs Lemma 2.3 in a crucial way, as was done in the proof
of the samplirg theorem.

Proof of Theorem 4.1: For x € @ define q;: TxR-R,
q,(¢,s) = wb{x.[_ggﬁ g] + s]. We have
W) = JTqux(-y)gmdy

= 2 [ a0stns (24)
and (see [9, Lemma 6.1])
|0, (k,0)| = (47 H{op(a/b)3, (o] (25)
< (47) 1o]3, (o]x1) | (26)
< (@) t. (27)
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Observing that ¢; = d/(L¥) the lefthand-side of (23) can be written as
2z¢; X g _(-v)g(v).
L 2 alvE0)
Applying Lemma 2.3 gives together with (24):
fe(x){ := |21cL ng qx(-v)g(v)-ﬂb*f(x)l

- I 3 JR q (ko) % . g((k,0)-u)do]. (28)

keZ uel! ,u#

Let g denote the characteristic function of K. Since the sets K+u,

1
u € I are mutually disjoint, we obtain

le(xj

q, (k, g(k,0)|d
P ARGl I U G T

. - -i(k,0).v_
v 3 [ ek la (0)l|ey 3 gD Vog(,0)|do
kez Jp K X L er 5(v) 5(k:0)

where we have used the Poisson summation formula (12) for the second term.
llence

el 2 sw (I (0)]) 2 I5(k,0) |do

(k,0)€ZxR €z J(k,o)¢K

+¢p I [g(v)] 2 la, (k,0) [do.

veL keZ J(k,o)gzl(
Now the estimate for e, is obtained by applying (27) to the first term on the

righthandside.  The estimate for e, results from observing that &x(k,a) =0
for |o] > b and using (26) for the second term.
0
The results derived so far provide the following procedure for choosing an

appropriate sampling lattice and obtain accurate reconstructions: First use
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a-priori information about f to determine the essential bandwidth of f which
should also be chosen as cut-off frequency for the filter Wb. If the cut-off
frequency is too small, Hb*f will not be a good appro;imation for £ and if it
is bigger than the essential bandwidth, the reconstruction error e, will be
large. Otherwise €y is not very critical, as we will see below.

Then choose the sampling lattice L so that the translated sets K+u, u € L'
with K 3 Ko(r,b) are mutually disjoint. According to the results of section
2 this guarantees that Rf is properly sampled and leads according to Corollary
4.2 to a small reconstruction error e;-

The application of Corollary 4.2 to the standard and interlaced lattices
is as follows: As we have seen in Theorems 2.6 and 2.7 the required
disjointness of the scts Ko(r,b) +u, u € L' translates into the sampling
conditions p > b/7, h < /b for the standard lattice and into the conditions
(16), (17) for the interlaced lattice. llence the parameters p and h have to
be chosen accordingly. For the standard lattice the disjointness of the sets
Ky(m,b) + u, u € Lg implies that the sets K (r,b) + u, u € Ly with K; the
rectangle

Ki(7,b) = {(k;0) € Z x R: [k| < b/r,]e] < b}
are also mutually disjoint. Therefore we can take K, (7,b) for the set K in
Corollary 4.2. Tn case of the interlaced lattice we have to choose
K= Ko(r,b) to achieve optimally sparse sampling. This is of little
consequence for e but increases eq- To see this we reformulate the estimate

for e, and bring out its dependence on [x|: Let K, K be as above,

1
Ky i= (1-7)b/7, K = b/r and § := 5(1-(r|x|)2)3/2. Using the estimates of
[12, p. 65] we obtain the estimate (i = 0,1):
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e —— e S

2 27 - -fk
) I (e]x])|de ¢ [? z JEePk (2
keZ J(k,a)ﬂ(i(&b), IO’I(bl ]\(Ulkl)l /; (1_ Tzlxl2)1;4 k)h',i ( )

According to this estimate we expect for 7 close to 1 a strong growth of
the error ey near the boundary of €. Since REN the error should be more
pronounced in the case of interlaced sampling. A comparison of the
reconstructions shown in Figures 3 and 6 of the mext section shows that these
expectations are justified. With increasing b the error decays
exponentially.

The performance of the filtered backprojection algorithm using the
standard lattice has already been studied in [10, 12, 13, 20] There the
errors due to the discrete convolution and the numerical integration with
respect to ¢ have been treated separately. It turns out that for the
standard lattice both numerical integrations yield accurate results when the
sampling conditions are satisfied. This is no longer the case when the
interlaced lattice is used. Then the discrete convolutions are highly
inaccurate because of the stepsize 2h being too large. The results derived
in [5] show that these errors cancel cut during the subsequent numerical
integration over T. DBut these cancellations may be disturbed by the
interpolation step inserted in between the two integrations. This provides
an intuitive explanation for the fact that, as we will see below, the
interpolation is harmless for standard sampling but critical for interlaced
sampling.

llaving seen that fLO represents the picture we want to have it remains to
clarify under which conditions |fy;(x)| will be small.  We obtain
Theorem 4.3

Let f € G (2),% as in Theorem 1.2, and L(4,L,M,N) be an admissible
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sampling lattice. Then

(1< 3 sup [ sin(e/2) 9o/ %H bqﬁd (30)
X 5—supJ sin”(Ha/2)|oy(o pX G- — . 30
Y22 4er )y ¢ez d
Proof: With Sip = d(€+6j/M) (see (13)) we obtain
I¥-1
2Td 2 2
Ty () = T 30 gez Vur(x-Oy 5;50RE(45,550)do
Frd N1 . iox.0;,  i0d(£+8./M)
= p J wir(0)e Iy e I URE(4.,d (646, /M) )do
M j=n Jp M ¢ez J i)
2r IM-1 . ) i«rx.Hj (Rf)az p 278 —i27r(,’6j/Md
=Tg X J wyt(o)e ¥ [ 0 - ]e o

where we have used Poisson's summation formula (12) with ny = O,ny = 1 and
L = {d¢,f € Z}. VWith Theorem 1.1 and the assumptions (19) we obtain the

estimate
|fHI ()1

097" g o - o

- 00 gy [ sinctaorn 3 yfo- ) 2 Ji (o - e

geT JR el
. 2 .
b sin“(lle/2) - . 27 (kM- )] ),
3/2
= (2« sup I w (o) 3 |f|le + ————|0]|de
(21) deT k0 J-b ‘“_" + xkiz b )eez’ [ d
2
s s || sulttor)losam 2 [ifls - 2]
<3 sup sin”(lle (o c- - c.
2 ¢eT '-b e’ d ]

The interpretation of this estimate is more involved than the one of

Corollary 4.2. As an example we discuss the case of standard sampling with
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Sty

d = h, and f essentially bandlimited with bandwidth b = x/h, which is also the

cut-off frequency for the filter Wy, Hence 2r/d = 2b and therefore the terms

R 27¢
with € # 0 in 2£6Z|f[[a - T] 0]| are negligibly small. The term with £ = 0

is equal to |f(¢f)]. In most applications we have f(x) > 0. This means
that |%(§)| has a sharply peaked maximum at the origin. For |¢| close to the
cut- off frequency b, |%(£)| is usually very small. In such a case the
integral in (30) will be small since sin2(Ho/2) is small for |o| << 1/H. So
with standard sampling it is usually safe to choose Il = h.  An example for
this is the Shepp-Logan phantom which we use for our numgrical simulations in
the next section.

If on the other hand i%(f)l is not small for |s| close to b, the interpolation
stepsize Il has to be chosen considerably smaller than z/b.  Then sin2(H0/2)
is small for all values -b < ¢ < b. As an example for this case we will
perform numerical tests with f(x) = Jl(blx-x0|)/|x-x0|. The Fourier

transform of this function is constant for || < b and vanishes for [¢| > b.

5 NUMERICAL RESULTS
In this section we present numerical tests for the theory derived so far. We
will concentrate on the standard and the interlaced lattices and will see that
the numerical results can be understood in detail using the theorems of the
last section. The theoretical results will in particular enable us to remove
the numerical difficulties with reconstructions from the interlaced lattice
reported in [9].

Figure 2 shows the first object we used for our tests. It is a
mathematical phantom due to Shepp and Logan [18] and simulates a cross-section

of a human head. Here f is given by a linear combimation of characteristic
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functions of ellipses. The density values of the ellipses are the values of
Rowland [17] multiplied by 900 and were also used by Kruse [9]. The
displayed values are those between 1 (black) and 75 (white). The biggest
value occuring in the picture is 900. All pictures are displayed on a 256 by
256 grid. As essential bandwidth we choose b = 1287 ~ 402.

Figure 3 shows a reconstruction made using the standard sampling lattice
Ls(h,p) with parameters

=7x/b=1/128 p=404 H=h
(o) = sinc(on/2)xq 17(7) (31)

where X(-1,1] denotes the characteristic finction of the interval [-1,1].
The sampling conditions of Theorem 2.6 are satisfied with 7 = b/p ~ 0.995.
From the discussions following Corcllary 4.2 and Theorem 4.3 we expect a good
reconstruction. This is obviously the case.

In Figure 4 we set H = h/2 which introduces a high-frequency pattern in
the interior of the object. According to Theorem 4.3 a smaller value of H
should lead to a smaller error fHI’ hence to a more accurate reconstruction of
Wb*f. This is indeed the case. The high-frequency pattern stems from the
jump discontinuity of the filter function ¢ which causes a jump discontinuity
of Qb(§) at |€] = b. Therefore for this choice of ¢ the high-frequency
pattern, though undesired, is a true feature of W, * f. It can be shown that
if I = h = z/b as in the previous picture, the error term fHI removes the
discontinuity in the Fourier transform of the reconstructed function and thus
causes the high-frequency pattern to disappear.

If we reconstruct using the interlaced lattice LI(h,p) = L(2h,p,2,1) with
the same parameters (31) as in Figure 3, the sampling condition (16) is
satisfied with 7 = 2b/(p+b) ~ 0.998.  But now the error fy; caused by the

interpolation becomes critical. The estimate of Theorem 4.3 reads
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1 - r (4
i <5 ;‘g j: sin” (Nef2) let{ob)] (?z!i [[w - -;;]0} i@r 32)

Since I;'(f)l is small for [£] > b asd becanse of k < xfb, ealy the tems with
€] <1 in the sem on the righthaadside are mot megligibly small. Ay we Bave
already discussed the term with £ = 0 %ill mot be critical for 2a chject like
this one.  For |£] = 1 however, [E((e-=(/R)B)] = |T((s:b))]. This meens
that the integrand o= the righthasdside of (32) migkt asstme larxe values for
ls} close to b, since sinz(lltlz) is mot small for tkese valzes of & if
H=~z/b. Sowe have to expect a coasiderable recoastrection errsr iz this
case. The picture of Figure 5 shows this error shich makes the
reconstruction totally nseless. The pictare is esseatially the same zs the
one of {9, Fig. 8.2.(c)]. Bat cur estimate (32) also sussests the folloxing
three ways to resedy the problea:

1. Choose H << z/b so that sin?‘(lla/2) << 1 for |o} < Ib]. FEhile this metkod
vill always work, the next two possibilities are only switable if !%({ )l
is peaked around the origin.

2. Choose h smaller than z/b so that |szx/h} stays auay froa 0 if Je] € b.

If I% | is peaked around the origin, even a swall decrease in h should give
considerable improvement, see Figure 7 belos. On the other hand
decreasing h might result in a violation of the condition that the
translated sets Ko(r,b) + u, u € L' are mutually disjoint and thus
introduce new artifacts.

3. Choose the filter ¢ such that [§(s/b)| << 1 for |o| close to b. Then the
integrand in (32) remains small also for these critical values of jo].-
These three options are tested in the following pictures.

In Figure 6 ve put Il = /(16b) so that sin’(lls/2) < 0.01 for o] < b. In
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tke interior the pictare is virtmaily ideatical to the reconstruction with the
standard lattice and small E showz im Fispre 4. Im particaler tke
high-freqzezcy pattemns dee to the discontimmity of ¢ coincide. Aside from
tke white rimg-type artifact 2t the boendary of the pictere we have 2 good
recoxstrection of ¥ *f. This corrcborates the assertioa that tke larse error
in tke previozs recozstrzctio: is camsed by the interpolation. The artifact
at the bomadary can be traced to thke error 1) of Corollary 4.2. Tke estimate
(29) skoxs that this error term groxs stroagly for |x| approaching 1. This
explains that the artifact appears at the bourdary of the wnit circle.
Fortkermore according to (29) the artifact should vanish if p is slightly
ircreased, corresponding to a smaller value of 7. Figure 8 shows that this
is indeed the case.

The second possibility of improvezent. nazelyv to decrease h, was tried in
Figure 7. ¥e used again the paraacters (31) but set h = 1/150. Hence
feza/h] 2 =fbh - b = 227 if |o] < b = 128z. Hence the peak of |%(§)| near the
origin is avoided. and as expected the reconstruction error is strongly
reduced. In the interior of the picture there are still some disturbances.

A comparison with the next picture suggests that these artifacts result from
the overlapping of the sets Ko(r,b) +u, u € L' caused by decreasing h without
increasing p- In Figure 8 we used again h = 1/150 but increased p to 470, so
that this overlap is greatly reduced. 1In addition we can assume a smaller
value of 7 in the error estimate (29). As expected from our reasoning above
the disturbances in the interior are removed as well as is the white ring at
the boundary. The high-frequency structures in the interior of the phantom
are very similar in Figures 7 and 8 but clearly different from the patterns
visible in Figures 4 and 6. The latter ones are, as we have seen no

reconstruction errors but belong to W *f. The difference stems from the
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interpolation and car be removed by reducing H, e.g. setting H = z/(3b).
This was essentially done by Kruse in [9, Fig. 8.2.(d)]. In his picture,
liowever, the high-frequency pattern appears as 2 lox-frequency disterbance
shich was not completely removed even by strong smoothing, see [9. Fig.
8.2.(e)]- The reason for this is that the pictere is displayed on a 166 by
160 instead of 2 256 by 256 grid, which causes alizsing.

The third method mentiormed above, i.e. choosiag the filter ¢ such that
l#(a/b)] << 1 for |} close to b yielded the best result for this phantoa.
In Figure 9 we used the filter ¢(s) = C°s(”’/2)xg-1,1](”’ and the other
paraseters as in (31). ¥e obtain a good reconstruction without artifacts and
of comparable quality as the reconstruction of Figure 3 where the standard
lattice was used. The small values of $(s/b) for |o| close to b seem to
remove the ring-1like artifact at the boundary. The continuity of ¢ removes
the undesired high-frequency patterns in the interior. The price for this is
a slight loss in resolution. So this method will only work if I%(f)l is
already small for |¢| close to b.

In summary, the numerical tests show that for this object good
reconstructions using the interlaced lattice are possible if the algorithm is
implemented in the right way.

Our second test object is the strictly bandlimited function

f(X) = —m_
with by = 207 and x ) = (-0.4,0.7)T. The main difference between the two

phantoms can be seen from the behaviour of their Fourier transforms. The
Fourier transform of the Shepp-Logan phantom is peaked around the origin and
relatively small for |¢] close to b, but has no compact support. The Fourier

transform of the function above is constant for |¢] < 207 and vanishes for
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|€] > 20x.  Since eo(f,b) = 0 for b > 20r we should be able to obtain very
accurate reconstructions from both lattices. Ve will see that this is indeed
possible. To achieve high accuracy we have to take into account that f has
no compact support and that the values of

Rf(¢,s) = 2 sinc(20x(s-x,.0))
for |s] > 1 are not small enough to be completely neglected. For our
purposes it will be sufficient to use the data for [s| < 6 for reconstructing
f inside the unit circle. As measure for the accuracy of tle reconstructions

%e use a discrete relative L2-error

2 N
LZE = i?j(f(xij) - fR(xij)) ] [I?J(f(xl,])) ]

where the X;; are the points at which the reconstruction is computed.

PhantomsJof this kind have been used by Rowland [17], Natterer [12] and
Kruse [9] for reconstructions using the standard lattice and by Kruse also for
reconstructing with the interlaced lattice. ALl three authors choose x, = 0.
This choice is not appropriate for our purpose since it makes the object
radially symmetric. This means that (Rf)”(k,s) = 0 for k # 0 which is too
great a simplification. Rowland demonstrated that it is necessary to choose
I« r/b0 even when using the standard lattice. The reason for this can be
seen from Corollary 4.2. The additional filter G“ is now critical because
|%(£)l is not small for |¢| close to b. While a choice of Hl close to 7r/b0
leads to discrete relative L2-errors around 0.4, much more accurate results
are possible with Il small. For our tests we used the following parameters:

b=20r p=70 H=x/(16b)
W) = xpq, 1@
The reconstruction using the standard lattice with h = #/b = 1/20 yields an

excellent result with LoE = 0.0085. Using the interlaced lattice with the
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same parameters we obtain an equally good result with LZE = 0.0093. But in

order to achieve this accuracy it is crucial to satisfy the sampling

condition, i.e. to make sure that the sets K (7,b) + u, u €Ly, 7= 2b/(p+b)

are mutvally disjoint. Increasing h to 1/18 increases LoE to 0.56.

decreasing h increases the error as the following table shows:

1/h

16
18
20
22
24
30
36
38
40
42

50

The explanation for this behaviour is that the sets Ko(r,b) + U, UE Li

are mutually disjoint only for h = 1/20 and h < 1/40.

LoE

0.74
0.56
0.0093
0.042
0.22
0.57
0.45
0.33
0.0087
0.0072
0.0070

Even

of the sampling conditions (16), (17) is absolutely crucial in this case,

llence satisfying one

where the Fourier transform of the object is not small for frequencies close

to b.
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Figure 2: left Figure 3: right

Figure 4: left Figure 5: right
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Figure 6: left

Figure 8; left

Figure 7: right

Figure 9: right
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R.F. MILLAR

An inverse movmg boundary problem for
Laplace’s equation

1 INTRODUCTION

Suppose that one or more incompressible, viscous fluids flow slowly in the
narrow gap separating two plane parallel plates. Such a configuration is
known as a Hele-Shaw cell. For steady flow, the problem is essentially

| two-dimensional and, in the absence of gravitational effects, the average of
the fluid velocity across the stratum is proportional to the pressure gradient
({11, §330]). Since Darcy's law for flow through porous media is of the same
form, two-dimensional flow through a porous medium may be modelled by flow in
i a llele-Shaw cell. Because Hele-Shaw flow is more easily accessible to

, observation and experiment than flow in a porous medium, this connection has
been utilised frequently to examine phenomena such as the interfacial
instabilities known to occur in both; see, for example, [19], and the recent

review articles [1], [5] and [18].

In a typical Hele-Shaw problem, one viscous fluid displaces a second that
has different viscosity or density, and interest centres on the evolution of
the interface between them. Instabilities in the interface may arise when
the displaced fluid is more viscous than the other liquid. The easiest
! situation to analyse occurs when one of the fluids has negligible viscosity
; and density. In these circumstances, one may neglect the motion of this
fluid, the pressure of which is taken to be zero. We shall confine attention
to this most simple case of single-phase flow and, although the relationship
between fluid velocity and pressure gradient is based on the assumption of

steady flow, we shall assume its validity in the time-dependent case as well.
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We shall also employ generally-accepted boundary conditions on the interface,
even though the question of which conditions are physically correct can hardly
be considered as settled ([1], [5], [18], [20]).

One may distinguish between direct problems, and inverse (synthesis or
control) problems. 1In the former, the real physical sources, or
singularities, of the flow are prescribed in space and time and, starting from
some given initial state, one wishes to predict the state for subsequent
times.

For an inverse problem, the evolution of the flow is prescribed, and the
object is to determine what sources - if, indeed, any - will sustain the
motion. Because of the theme of this meeting (but also since the method to
be described is better suited to that task than to the direct problem), we
shall consider only the inverse problem and, for certain examples, we shall
discuss whether or not the prescribed motion of the interface can be realised
in practice.

Conformal mapping techniques have provided a powerful means for studying
Hele-Shaw problems. For time-dependent (as opposed to steady-state)
problems, the usual procedure consists in obtaining a nonlinear differential
equation for the time-evolution of the unknown analytic function that maps the
unit disc onto the flow region ([1], [6), [7], (8], [9), [15]). It is
believed that these methods have not been used to study inverse problems.

In the present work, a different approach is adopted. For the
single-phase Hele-Shaw problem, it will be seen that the pressure is the
solution to a Cauchy problem for the Laplace equation, with analytic data
prescribed on the unknown interface. An explicit representation exists for
this solution, analytic in a neighbourhood of the interface ([12]).

Moreover, the Cauchy data can be expressed completely in terms of what is
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called the Schwarz function S of the interface curve ([2]). Consequently,
the pressure can be written explicitly in terms of § and its derivatives
alone. Prescription of S as a function of time is thus equivalent to
prescribing the evolution of the interface, and the singularities required to
maintain the process are readily found. Some of these will lie on one side
of the interface in the fluid region; others may lie outside the fluid where
the solution corresponds to the analytic continuation of the pressure.  (The
Schwarz function has arisen in previous analyses of Hele-Shaw problems; see
61, [9], [10], [15], [16] and [17].)

In the following section, the problem is formulated. Then the solution
is expressed in terms of the Schwarz function of the interface curve. The
effect of surface tension (T) on the interface is included, and some immediate
consequences are briefly described. The physical realisability of solutions
is discussed. Time-dependent problems are examined under the assumption that
T =0. Consideration is given to interior problems, in which the fluid
occupies a bounded, simply-connected domain, and to exterior problems in which
the complement of the fluid domain is of this form. Specific attention is
given to interfaces that are circles, ellipses, and limacons. The stability
problem is not addressed. For the interior problem, an interface that is
elliptical for all time can be generated by a system of simple sources on the
interfocal segment. In the exterior case, an interface that is elliptical
for all time can be generated only if the ellipses have constant eccentricity
and the pressure becomes unbounded logarithmically at infinity. In both
interior and exterior problems for limacons there are singularities in the
finite plane inside and outside the fluid region. For the interior
problem,it is possible to generate the solution. In the case of the exterior

problem, however, the relevant singularities extend to infinity and it seems
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unlikely that this solution could be realised in practice.

In connection with these examples, some consequences of nonvanishing
surface tension are investigated briefly. The interior solution for anm
ellipse still seems to be realisable, but the exterior solution is not. For
the limagon, the mathematical solution does not exist when T # 0.

Finally, we mention some other problems that can be formulated in the same

manner as those described here.

2. FORNULATION OF THE PROBLEM

Lat Dt denote a domain in the complex z-plane. Its boundary Gt evolves with
time t. An incompressible, viscous fluid fills a region between two
closely-spaced, parallel plates, and projects orthogonally onto Dt‘ Suppose
that this Hele-Shaw cell is unbounded and consider an inverse problem in which
the evolution of Gt is prescribed. 0One wishes to determine the sources or
sinks, if any, that will produce this behaviour.

It will be assumed that Ct is a simple, closed, analytic curve, oriented
positively. The unit normal ﬁ to Ct will always be drawn out of the bounded
domain enclosed by Ct'

Ifz¢ Ct’ then the Schwarz function S of Ct is defined by z = S(z,t),
([2]), so knowledge of S determines Ct‘ It may be obtained by rewriting the
equation f(x,y;t) = 0 for G, in terms of z and z, and solving for z. The
Schwarz function is analytic near Ct‘

Let the angle % be defined in terms of the unit positive tangent vector &
t0 Gt by § = (cos ¥,sin 9). Then n = (sin ¢,-cos ¢), and the derivative
5,(z,%) = €12, 2 e ¢, [2, (7.8)]. Ve shall define (S,(z,t))'/% by

si/2 .- e, 2 e,
from which it follows that dz/ds = 8;1/2 on Ct’ Thus with S;/2 is associated
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a particular oriestatiom of (:t-
4 discassion of the Eele-Shav equations is given ik [19]. If v desotes

the fluid velocity in B, then, if gravitational effects are megligible,

1
v=-cf Tn, (2-1)

in hich K := 6x/dZ vhere d is the distance betveen the plates, x is the
coefficiert of viscosity of the fluid. and u is the finid presssre.

Incompressibility implies that

An =0, z€D, (2.2)
except at singularities. At a poiat oa ct,
u = £k, (2.3)
and v.;x = \7n, S0
ou
‘; = -2“7,‘; (2'4)

here T is the surface tension coefficient, assumed to be zon-negative for
immiscible fluids, x := d¢/ds denotes the curvature of Ct, aad \‘n is the
velocity of €, at z in the direction n. The sign ambiguity in (2.3) is
resolved in the following manner: for interior problems in shich Ct contains
Dt the upper sign is chosen; for exterior problems we choose the lower sign.
(This sign ambiguity is a result of the unique definition of S;/ 2 for both

interior and exterior problems.)

3. SOLUTION REPRESENTATION

Equations (2.2) to (2.4) define a Cauchy problem for Laplace's equation.
Since Ct; and the data are analytic, a unique solution exists in a
neighbourhood of Ct;‘ It is our intention to determine the singularities of
this solution when Ct is prescribed. The goal may be attained by using a

representation for the solution.



Seppose that D is a real neighbourkood of am amalytic arc C. lLet S
dexote the Schuarz function of C, and suppose that u is harmomic on D.

Defire z := x + iy, z* := x - iy, where x and y may be complex. Asseme that
C is parasetrised by arcleagth s as z= z(s), and let s = s(z) be the inverse
1 relatioaship. If w = v(s), dufdm = %(s) on C, thea ([12]) u(x,y) = U(z.z).

wkere

« 1 % 1 s(z)
U(z.z ) = 5[v(s(z)) + ¥(s(z))] +5i J_S(z*)w(s)ds; (3-1)

here an overbar denotes the conjugate function and the integral is in the

complex plane.
4 If V(z) == v(s(z)) and ¥(z) := x(s(z))ds/dz. then (3.1) becomes
; * Uz,z) = %[\’(z) S V(S(E))] + -12- ij:(z,,)w(c)dg, (3.2)
z and z =z gives
() = 310 + V6@ +3 5 [o__ V(0 (3.3)
u{x.v) = 3|V(z) + z)] +51i . .
O]

The quantities x and Vn in (2.3) and (2.4) may be expressed in terms of S
and its derivatives; for, by [2,(7.17)],

1
_ s -3/2
K= 5 lszzsz

J
. -1/2
- -iz(5,),
for z € C,.  Also, if now z(t) := x(t) + iy(t), where (x(t),y(t)) always lies
on G, then differentiation of z{t) = S(z(t),t) immediately gives v.n, and
» 1 - "1/2
Vo(2) =- 5355 °/%, z¢€ Gy - (3.4)
Insertion of the Cauchy data into (3.3) yields
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1 iszz(z’t) 1 ¢z
u(x,y;t) = = 5T 'e{-IE;E;:;53377} -3 KJS(E:ET St((,t)d(, (3.5)
and the solution is expressed completely in terms of S and its derivatives.

It may be shown that the integral in (3.5) is real. The contour of
integration is obtained by continuously deforming the path for a point near Ct
into that for the given point z, and will depend on the mapping properties of
S. If § is multivalued, this integral will be on the corresponding Riemann

surface. It is possible, however, to show that

Z Z Z -
[ suemac= [ syenies [ sycou,
Siz,ti % %

in which z_ is any point on C,. (A similar observation has been made in
[4].) Consequently (3.5) may be rewritten as
1 szz(z’t) Z
u(x,y;t) = Re{i 7 il EE;E;:ZSE§7§ -K JZOSt((,t)d(], (3.6)
and if a compléx potential w is defined by
1 Szz(z’t) 2z
W(z,t) = % g iT B X Jzost((,t)d( (3.7)
(to which any purely imaginary function of t may be added), then
u(x,y;t) = Re w(z,t).

Now, W, =1 iu, so

x Ty
1
. . 2
U, - dug =4 §1TS;/ {S,2} - KS, (3.8)

in which {S,z} is the Schwarzian derivative of S. From (3.8) for z € C,, and

1
the result (7.23') of [2]: ds/ds = 5i{5,z}, together with (2.1) and 3.4), we

deduce that

. Tde
v.t = + -2—K' 'a-g, (39)

and verify that
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v =V, (3.19)
on Ct‘ Thus, if T # O there is a tangential component of fluid velocity on
C, unless dk/ds = 0.  This component vanishes if €, is a circle; but
generally there is a discontinuity in tangential velocity across C, which
corresponds to a layer of vorticity on Ct'

The results (3.9) and (3.10) refer to behaviour on C,.  Suppose, however,
that we are interested in fluid velocity at some point P interior to the
fluid. Then (3.8) is valid, in which S refers to .. Let C' be any simple,
closed, analytic curve through P, lying in the domain bounded externally by Ct
and having positive orientation. Suppose that %' and ﬁ' are the unit tangent
and normal vectors to C' at P.  Thus, if é' = (cos ¢', sin ¥'), then
el - (Sé)'l/z, where S§' is the Schwarz function of G'; this result depends

only on the direction of C' at P. Consequently, at P,
. 2
. s iT d 1
. -1/2 -1/2 -1/2
v.(6'+in') = 2 (51 Y 6, 1Yy + 5503, (3.11)

2
in which the result S;/z{s,z} = -2;;5 (8;1/2) has been used.
If T = 0, the complex potential and velocity are determined by St alone;
in particular, time independent singularities of S do not play a role. To be
more precise, let z € Dt' for 0 < t'< t, and suppose that there are no

singularities of pressure in Dir.  Then, from (3.8) with T = 0,

t
J v (2,8")dt" = K(S(z,0) - 8(2,1)),
0
from which it follows that the singularities in D, of S(z,t) coincide with
those of S(z,0), are constant in time, and do not affect w,(z,t). These

points have been noted previously ([9], [10]), and used by Howison to simplify

the integration of a system of differential equations that determine the
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evolution of G, for an exterior problem. On the other hand, if T # 0, then
zeros of 5 become important. For, if 5 (z,t) = (z—zl)“H(z,t), where H is
analytic near 245 H(zl,t) # 0, and n is.a positive integer, then, near Z{5
SZZ.S'Z3/2 ~ n(zrzl)'1'1/2nﬂ(zl,t)'1/2; thus w has a branch point at z; of
order at least -3/2 if n is odd, and a pole of order at least two if n is
even. Although mathematically significant, such singularities are likely to
be difficult, if not impossible, to synthesise physically. In general, then,
such an S will not be admissible, and the corresponding G, will not be
realisable.  Some illustrative examples will be given later.

The elimination of possible solutions by surface tension is consistent
with an observation in [6]. There, when T = 0, it was shown that a cusp
develops on the fluid boundary when a zero of the derivative of a function
that maps the fluid region conformally and 1-1 onto the unit disc reaches the
unit circle from its exterior. Such a zero may be shown to correspond to a

zero of 5, in the fluid region.

4. PHYSICAL REALISABILITY OF SOLUTIONS
In studying inverse problems, one objective is to determine all singularities
of the solution. Some of these may be internal singularities that lie in the
region occupied by fluid and others may be external singularities that exist
in the analytic continuation of the solution beyond the fluid boundary
Ct‘ For a given interface Ct’ into which category a particular singularity
falls depends on whether we are considering an interior problem or an exterior
problem.

The external singularities may be regarded as image singularities that are
induced in the solution and depend on the form of Ct' This interpretation is

common in electrostatics, where the effect in the region of interest of the
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image of a source in a conductor is produced by an appropriate induced charge
distribution on the conductor. In the Hele-Shaw probem, the fluid external
to D, reacts on Ct against the internal fluid to create an effect equivalent
to that of the external singularities, thus resulting in the required pressure
on, and motion of, Ct.» Consequently, we need not account explicitly for the
effect of external singularities, except to note that analyticity of Ct will
be destroyed at time t at a point where such a singularity meets C, ([6],
[10], [15]).

A further aim is to decide whether the solution is uniquely determined by
its internal singularities and, if so, whether they can be realised ia
practice. For an interior problem, it was shown originally by Richardson
([15], [16]) that if the internal singularities are simple point sources, then
all the complex moments of D, are determined, given the initial configuration.
From these is found the part of S that is analytic outside Gt and zero at
infinity. . (Richardson's analysis would appear to generalize to other types
of singularity.) It was also pointed out in [16] that knowledge of the
moments of Dt alone does not necessarily determine D, uniquely, as shown by
the example of Sakai ([21]). Nevertheless, from the fact that functions and
domains in the Hele-Shaw problem depend continuously on time, Richardson was
led to conjecture that some such domains would be uniquel& determined by their
moments, and thus by their internal singularities. Specifically, he has
determined the evolution of Gt when there are as many as four internal simple
sources. lis method involves the conformal mapping procedure; it becomes
more and more complicated as the number of singularities increases, and
impractical if the singularities of § inside G, are not poles ([10]).  (Note
that S is meromorphic inside 0t if and only if the mapping function occurring

in this procedure is rational ([2, p. 158]).)
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In the examples that follow, we shall assume that internal singularities ;
in the form of simple point sources, doublets, or continuous distributions of
simple sources on finite curves can be synthesised physically and, even when
T # 0, like Richardson, we shall conjecture that the internal singularities

and initial configuration uniquely determine the evolution of Ct‘

5. TIME-DEPENDENT INVERSE PROBLEMS WITH T = 0
Here we consider time-dependent problems in which surface tension is
neglected. Many such solutions have been obtained: see, for example, [6],
(71, 81, [9], [10], [15), [16], [17]. In Richardson's work, solutions are i
obtained that can be generated by realistic sources. It seems less likely,
however, that many of the other solutions can be realized in practice, even
with the neglect of surface tension effects.

Let us begin with a simple example. Suppose that Ct is the circle of

radius r(t), with centre at 0. Then S(z,t) = rz(t)/z, and (3.5) gives

u(x,y;t) = -Krr[log 2 - log(r®/2)],
in which the principal branch of the logarithm is selected. Then

log z - log(r2/2) = 2log(}z|/r), and

u(x,y3t) = -2Ker log(|2|/), (5.1)
a‘result that follows also from (3.6).
This solution is valid whether D, is bounded internally or externally by

C For the interior problem, 0 < |z| < r, and one finds u 20 accordingly

-
asr20. Whenr> 0, fluid is injected at O and extraction takes place if
r<0. The fluid velocity is radial, the outward component being rf/|z|.

The source is at 0, and the flux across any curve enclosing 0 is equal to the

time rate of change of the area of D, .
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When D, lies outside C;, |z]| > r and u S 0 accordingly as r20 If

r> 0, fluid is removed at infinity; fluid is injected if r < 0. Again, the

velocity is radial and equal to rf/lzl, and there is a logarithmic source of
pressure at infinity. In practice, this flow could be generated in the
region between a circle centred on 0 in |z| > r and the circle |z| = r by
setting up the appropriate pressure difference between these circles, the

pressure in |z| < r being zero.

5.1. Interior probiem for ellipses
We consider a rather more difficult example, in which the curves Ct(t > 0)
evolve in the form of a family of ellipses.

2.2 _ 2b2

Let G, be the ellipse b™x” + a%y® = 2%, vhere a and b are prescribed

functions of time, and a > b > 0. The Schwarz function for Gt is

2.2
a“+b 2ab
8(2,t) = —— 2 - — (2%-cD)1/? (5.2)
c c”
([2, (5.13)]), in which ¢ 1= a2 - b2, and the complex plane is cnt from -c to
¢ with (z2-c2)1/2 >0 for z > c.

We shall consider the velocity field v of the fluid in the domain Dt

contained within C.. It is given by (2.1) where, by (3.8),

2,2
d a%+b d (2ab
. _ } ,2_ 2,1/2
UX - 1lly = -K[Z —dt [ c2 ] (L C ) / E [——02] +

1 2abé
] (5.3)

+ .
(22_02)1/2 C
Integration of (5.3) on a curve C enclosing the segment (-c¢,c¢) shows that

the flux across C is the rate of change of the area of D, .
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The analytic function u, - iu_ may be represented by its Cauchy integral

y
and so related to its singularities. Deformation of the path of integration
around singularities and into a circle at infinity, followed by some

simplification, leads to the following result:

R R M e PR e 2

and, since U - iUy =g, we find that

m@=ﬂwégaﬂfpwé%w]ﬁigﬁmmﬂmmw

(5.4)
Here any branch of the logarithm may be selected, since only u(= Re w) is of
interest.

From (5.4) it is seen that w is generated by internal simple sources along
the interfocal segment, while the term in z2 arises from external sources at
infinity. In general, c¢ is dependent on time and the internal sources are
not stationary.

We consider two special cases, but only one in detail. In the first, it

a-b
is assumed that the ellipses have constant eccentricity. Then a—[——B] 0,

dcab
HE[—Q] = 0, and (5.4) simplifies to
c

w(z,t) = -

%Kab ¢ log(z-¢)
J i ¢+ g(t).

T e D d

The function g may be chosen so that u = 0 on Gt’ and
ath 1 ¢ log|z¢|
u(x,y;t) = 9Kab [log[ ] J —5—5- d ].
-¢ V(c™-¢%)

From this, one sees that the motion is generated by a continuous distribution

(5.5)

of simple souarces on (-c,c) with density -2K(éb/x)/4?c2-{2), -c< &<
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When z lies on the segment (-c,c), it is found that the integral in (5.5)

1
is equal to 7 log(s ¢), so

. a+b
u(x,0;t) = 2Kab log [———], -c <x<¢; (5.6)

c
here the logarithm is constant in time, and u is constant for
-c<x<¢c,y=0, for a given time.
Let C' be an ellipse in D, that is confocal with G, - Then it may be
shown that u is constant on C'. More precisely, if a' and b' are its

semi-major and -minor axes, respectively, then

. atb
u(x,y;t) = 2Kab 10g[5731F}, z € 0!, (5.7)

which reduces to (5.6) if C' collapses onto (-c,c).
Since u is constant on C', v is normal to C'. A calculation based on

(3.11) with T = 0 verifies this and gives

a'ab - (5.8)
= ————— ) 5.
) vqa'4-c2x2) ’
in which n' is the unit normal to C'. This determines the analytic function

U - iuy on ¢' and, hence, everywhere. In principal, then, if this velocity
is impressed across G', the correct motion will be established inside Ct; but
because analytic continuation is unstable, small errors in impressed velocity
on ' will lead to large errors elsewhere.

For the second case, we assume that the ellipses are confocal. Then, on

omitting details, it is found that

1 o 4 a 1 d c
u{x,y;t) = §(y2'x ) & [5;5] ) Tclab) J_c V(e ) log|z- €] d¢

a3b d b 1 a+b 1, d
+ -2-0—2- a:E [5] + '2-[10g[—2—] - '2'] a_' (&b).

It may be seen that u(x,0;t) depends on x when -¢ < x < ¢, in contrast to the
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result in the previous example. In fact, the curves on which u is constant
are confocal ellipses only when the ellipses Ct are members of a family with

constant eccentricity.

5.2 Exterior problem for ellipses
Suppose that the domain occupied by fluid is outside Ct’ with extraction from,
or injection into, Dt at infinity. It is assumed that S (and, hence, St) has
no singularities in the finite plane outside Ct; thus the only sources in the
fluid region are at infinity. We shall also suppose that u - iuy behaves
like z ! as |z] -+ », so that the time rate of change of the area inside C; is
bounded; any greater growth at infinity seems to be unreasonable on physical
grounds.  Consequently St is of order 71 at infinity. Finally, it will be
assumed that S is at most of order z as |z| - «.

Subject to the assumptions on S alone, it may be shown that Ct(t > 0)
determines a family of ellipses ([22], [23], [14]), for which, in general, S,
is of order z at infinity and the behaviour of u - iuy is inadmissible. (It

is conjectured that U, - iu_ would have inadmissible behaviour at infinity if

S grew more rapidly than z,ybut we can offer no proof.) Only if the family
of ellipses has constant eccentricity will St be of order z'l, as required,
and clearly CO must be a member of this family.

Then, subject to the assumptions above, one concludes that Ct can sweep
over every point outside CO if and only if C0 is an ellipse, and Ct(t > 0) is
an ellipse with the same eccentricity as Cj. This result has been given
previously in [8], and generalised to R™ in [3].

To discuss the possibility of synthesising this solution, the form of u at

infinity is needed. With notation unchanged from the previous section, (3.7)
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and 5, (z,t) = Zéb(zz-cz)'l/2 give
- d¢
w(z,t) = -2Kab 2 223?253175, Zg € Gy .
Since u is independent of z,, We may take Zy = a- Then the integral is
expanded for |z| > ¢ to yield
22 §§c4zf4 +...] + h(t),
in which log denotes the principal branch, and h is real. Thus

. 1
w(z,t) = -2Kab[log z - 7 ¢
4

u(x,y;t) = - 2Kab log|z| + h(t) + 0(|z|'2), |z] - .
If G, is a circle, so ¢ = 0, this result reduces to (5.1). There are no

internal singularities of pressure, but there is a logarithmic singularity at

infinity. The external singularities lie along the interfocal segment of the

ellipse Ct'

In practice, instead of a singularity at infinity, a source or sink of
pressure would be impressed along some closed curve C'; Dt would be bounded
internally by Ct and externally by ¢'. If C' were chosen to be a large
circle centred on 0 then, at least initially, the desired flow would be
generated.  Alternatively, if C' were an ellipse, instantaneously confocal
with Ct and with semi-axes a' and b' (a' > a, b' > b), then the pressure on C'
is given by (5.7). The maintenance of this pressure on C' would produce the
flow in the region between G' and G, but, because C' changes with time, this

would be difficult to realise physically.

5.3. Interior and exterior problems for limacons
As a further example, it is assumed that Ct is a limacon. This has been a
popular choice in earlier work that uses the conformal mapping technique to

generate solutions, because the mapping function is a quadratic polynomial;
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but no attempt seems to have been made. to relate the solutions to their
singularities. \

In polar coordinates, with the pole of the system at z = -a, Ct has the
form

r=1+ 2a cos 0;

1
here a is a function of t and it is assumed that 0 < a < 5, so that C is

simple.  Then ([2, p.54])
(R+1) [2z+a(R+1)]

422 ,
in which R := (1+4az)1/2, and R > 0 for z > -1/(4a). Since a < 5, the branch

5(z,%) = ’ (5.9)

point lies outside Ct’ and the complex plane is cut along the negative real
axis from -1/(4a) to -o. If a =0 for t = 0, then C) is a circle of unit

radius, centred on 0. The branch point moves to the right as a increases,

1
and meets Gt when a = 7

The family of limacons considered here is a one-parameter subset of the
original two-parameter family considered by others ([6], [7]). In the
earlier work, the two parameters are related in such a manner that the
corresponding St has only a simple pole at z = 0. Here, in contrast, St will
have a pole of order two at z = 0. More precisely, for a > 0, S has a pole

of order two at z = 0 and no other singularities inside Ct' Near z = 0,

a 92241 3
S@¢)=—§+ —+ (a2 ) + .., (5.10)
z
and
a 4aa 9, *
8, (2,t) = 3 t——+ (-3a%a+ ..., (5.11)

By employing (3.8) and the Cauchy integral representation for uy - iuy, we

obtain

e

e e i 4 e e o it s < - e




_ a  daa a ~1/(da) 2¢%46ag41  d¢
llx - luy = -K[—2 + T - -2—1- [ W 'f—_z]. (5.12)

Z -0

Thus, to within an additive function of t alone,

. 2
. 1/(4a) 2¢7+6aé+1
(ort) = K- o dog z g [ e Log(e-2)ie]

§2|1+4a§|12
and
: 2
ax . a (1/(4a) 2£°+6af+1
u(x,y;t) = K|—5—5 - 4aa log|z| - 5= log|é-z|dé]|.
(cit) = K elel g7 [ s oslteelie]

Suppose now that the fluid region D, is interior to C,. The internal
singularities at z = 0 correspond to a simple source and a doublet. The

external singularities are a distribution of simple sources on the negative

1
real axis from - t0 -1/(4a). If 0 < a <3, the motion will be generated by

1
the internal sources; when a = 3, an external singularity meets Ct’ which

loses analyticity at this point and the solution breaks down.

If the fluid is external to C., then the internal singularities are simple
sources on (-w,-1/(4a)), and the external singularities correspond to a simple
source and a doublet at the origin. Starting from an admissible initial
configuration (for example, a(0)1= 0 so that C, is the unit circle), this flow
couid be generated by the source distribution on (-w,-1/(4a)); in practice,

this source configuration would be difficult to set up.

6. TIME-DEPENDENT PROBLEMS WITH T # 0

We shall now briefly re-examine the examples discussed earlier, but with
surface- tension effects included. It has already been noted that zeros of S,
in the flow region are not permissible, so any such cases will be omitted.

It goes almost without saying that in general one effect of surface
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tension is to complicate the analysis. Bat if Ct is a circle, thke carvatnre
x is constant, and the condition (2.3) merely raises or loxers the pressure
by a coustant amount. Thus swrface teasion does mot affect tke motiom in
this case, an observation made previo-siy in [24].

The complex potestial is giveam by (3.7), from skick it follows that

N - in, =T ?(s‘z’/?) - &S, (6.1)
Orce again u - in  may be related to its simgularities by means of the Caxchy
integral represent;tion. In 2ddilion to simgularities tkat arise whea T =0,
the zeros of Sz rov plav a role.

¥or the ellipse. from (5-2) se find that S, has txo simple zeros at

zZ = :t{a?‘-rbz) Jc. Since a(a-c) + B2 > 0, it folloxs that these iie oniside ike
ellipse. Thus the term in (3.7) or (3.8) that depends on T has tvo branch
points inside Ct and tvo outside Ct- Since SZ has zeros ountside the ellipse.
for reasons mentioned earlier we shall disregard the exterior problea.  For
the interior problem, additional cuts are nov made in the complex plane
outside G, from i(32+b2)/c to %o. In addition to the integral arising whea
T = 0, the representation for w when T # 0 xill contain an integral on (-c,c)
and integrals on these new cuts. Their integrands will behave like
[z:k(a2+b2) /c]'3/ 2 hear these points, and the integrals will involve second
derivatives 5f the potentials of simple source distributions. Since these
are external singularities, we conjecture that the flow is realisable, in
accordance with the discussion in section 4.

In the case of a limacon, from (5.9) it is found that S, has only one

1
Zero: z = -2a(1—2a2); because 0 < a < 5 this lies inside Ct’ and the

corresponding term in w will have a branch point of order -3/2 at this point.

Since it is impossible to define U - iuy by (6.1) as a single-valued analytic
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fezction i a meighbonrkood of C,, ve conclude that the limacon is not a
solztion for either imterior or exterior probless if T # 0. This, then, is a
specific example that illustrates how surface tension limits the class of
possible solations.

7. CENCLUDING RFMARKS

The ore-phase Ecle-Shaxw flow problem on an unbourded domain can be formulated
as a Cauchy problem for the Laplace equation. By adopting this point of
view, znd using an explicit represeatation for the solution. the required
harmonic function is expressed completely in terms of the Schwarz function of
the interfacial curve. This form of the solution is well-suited to the study
of inverse probless, in which the Schwarz function is prescribed. The
realisability in practice of the flow when the interface is circular,
elliptical, or in the form of a limacon, has been examined by relating the
Schearz function to its singularities, with or without the consideration of
surface tension effects.

Other problems can be studied in this way. These include steady-state
problems, in which the curve Ct is merely the translation of Co with uniform
velocity V, along the x-axis. Then S(z,t) = V t + §(z-V t,0) ([2,(8.8)]), so
8 (z,t) = V [1-S_(z-V,t,0)] and the integration in (3.5) and (3.6) can be
performed explicitly. Such problems can be reduced to examination of S(z;0);
they can also be formulated directly in a more elementary way ([13]).

Examples include the motion and shape of bubbles and fingers in llele- Shaw
cells of finite width.

Problems of two-phase flow can be formulated in the same manner, although
the Cauchy data on the interface are not given explicitly in terms of S, since

there is coupling between the solutions in the two fluids.
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Moving boundary problems arise also in many other contexts; see, for ?
example, the introduction to [6]. Some of these involve synthesis or
control, and tke present approach should be useful there.
Direct problems are more difficult to examine in the present formulation,
for they require the determination of S from prescribed sources. Some
consideration has been given to this general problem ([6], [9], [10], [15],
[16]j. Much remains to be done, and it is hoped that others will be

encouraged to study the question.
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A.B. PARRY
The scattering of velocity fields by an airfoil
in compressible flow

1. INTRODUCTION
The interaction of an airfoil with a fluctuating velocity field, and the
calculation of the resultant scattered field, is generally of great . importance
in both aerodynamics and hydrodynamics. Most of the work in these ares has
been concentrated on low frequency interaction problems in incompressible or
weakly compressible flow (von Karman & Sears 1938; Sears 1940; Kemp 1952,
1973; Osborne 1973; Goldstein 1976, chap. 3). The latter can, of course,
be reduced to an equivalent incompressible flow problem by a suitable
transformation (see, for example, Ward 1955; Landau & Lifshitz 1959). Here,
however, we consider such scattering problems in as much as they apply to
noise generation by blade row interactions on the new generation of advanced
propellers. In this application the blades operate in the high subsonic
regime - even at 'take off' and 'approach' conditions.!  Accordingly, the
usual methods of dealing with these interaction problems are inappropriate.
Moreover - as we will see below - the disturbance velocity field is not always
convected with the mean flow, as is usually the case.

The way in which the fluctuating velocity field is modelled, and the
far-field sound obtained from the unsteady pressure distribution across the
airfoil chord (and, indeed, across the whole span of the blade) on advanced

propellers, is described in detail in Parry (1988) and Parry & Crighton

i In virtuaily all of the present designs, the blade tips only operate
supersonically at the 'cruise' condition or design point.
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(1989).  Here, therefore, it is only necessary to consider the interaction of
a single Fourier component of the velocity field with a flat plate. The
problem is aésumed to be two-dimensional.2 Our aim is to calculate the
scattered field and thereby the distribution of unsteady pressure across the'
plate. |

In §2 we consider the interaction of an airfoil with a convected gust from
upstream infinity. Applications of this to the wake interactions on a
counter-rotation propeller show considerable differences between the measured
and predicted acoustic field. 1In §3 the work is extended to include the
interaction of an airfoil with potential (i.e. non-convected) velocity fields
from both upstream and downstream infinity. In additiorn, an iterative
technique is presented which can be used to put the solution in the form of an
asymptotic series. Comparisons between predictions and measurements of the
far-field noise of a counter-rotation propeller show that the predictions are

extremely accurate, in terms of both absolute levels and noise directivity.

2. CONVECTED GUST INTERACTIONS
The major source of aerodynamic interference between blade rows is taken,
usually (and naturally enough), to be the unsteady velocity field associated

with the viscous wakes generated by the upstream blade row.3 We suppose that

2 Some justification for the two-dimensional approximation comes from the
asymptotic analysis of Parry & Criﬁhton (1989) who showed that noise
generation is highly localised at discrete radii.

3 In addition the tip-vortex, of current interest with regard to advanced
propellers, can be represented by convected gusts. Tip vortex interactions
can, therefore, also be described by the methods of this section - providing,
of course, that the velocity field is known.
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the gusts - representing the velocity field - are of relatively high
frequency; this is appropriate for advanced propellers which have large
numbers of blades (in addition, we must remember that the ear is most
sensitive to the higher frequéncy interactions which, therefore, assume

greater importance).

A transformation
We start with a single Fourier component of the convected velocity field given
by

v = u exp[ik(Ut-x)] (1)
ony =0. The axes x and y are oriented as shown in figure 1 and centred on
the airfoil leading edge with U the velocity in the x direction and k the
wavenumber. The disturbance velocity potential ¢ will satisfy the convected

wave equation which we write as

P g0

2 .

(1-M°) —5 + —5 - 2ikM° — | 2,2, _ 2
where N = U/co is the Mach number and the time dependence elkUt is implied.
The boundary condition on the airfoil surface is simply

d¢
X otve 0 on y=0,0<x¢gc (3)

where ¢ is the chord length of the airfoil.
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Figure 1. The coordinate axes for downstream (leading edge) interactions or

upstream (trailing edge) interactions.

We now introduce the Prandtl-Glauert coordinates, scaled on the semi-chord

¢/2, given by

X=2x/c, Y=20yc, (4)

where g = (1—M2) is the usual compressibility factor. We also introduce a

new potential ¢ such that

cu oM
fly) = g HEDenfi —5 x]. )

The result of (4) and (5) is that (2) thén reduces to the standard Helmholtz

equation

V25 + K29 = 0 (6)

where the new nondimensional wavenumber K is given by
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and ¢ = kc/2 is the reduced frequency. In the new coordinate system the

boundary condition on the plate is given by

0
-ag = -exp(-ikX) on Y=0,0<X <2, (8)

and the pressure p = -pD¢/Dt = - pU(ik+d/dx)¢ is related to the transformed
potential ¢ by

2
o [i J—M—i X] [in + -ag] Y. 9)

p=- exp
J(1-4%)

where the wavenumber x in (8) and (9) is

’ (1)
K= —s.
1- 42

Airfoil response

The solution to (6), subject to the boundary condition (8), at high
frequencies produces a pressure distribution which oscillates rapidly away
from the leading edge of the airfoil where, indeed, it will be (integrably)
singular.  The pressure will be, therefore, to a large part self-cancelling.
The trailing-edge region, where a Kutta condition is applied, should then be
relatively unimportant so that the pressure distribution is much the same as
that on a flat plate extending to downstream infinity. This leading-edge
problem, or two-part boundary problem, can be solved by the Wiener- Hopf
technique (see, for example, Noble 1958; Crighton 1977). The solution has,
however, been given previously by Landahl (1961) and Goldstein (1976), who
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used an alternative approach, and we simply quote the result as¢
® 2pUu T oM ;
Ap(X) = exp[—i—- i ]
[TU(1+M)X]1;2 4 1+M

(11)

o v st e 4 e

Measurement vs. prediction

It is difficult to validate this result directly as we have no suitable data
on blade unsteady response. However, by combining it with the noise
radiation formulae for counter-rotation propellers (Hanson 1985), and an
appropriate model for the (viscous wake) unsteady velocity field (Parry 1988), |
we can obtain predictions of far-field noise. (The way in which these

different stages can be combined into a robust prediction scheme has been

described by Parry & Crighton 1989). These predictions will be compared with
measurements taken from the flyover tests carried out by Rolls-Royce on the
Fairey Gannet counter-rotation propeller: details of these tests have been
discussed by Bradley (1986). This comparison has been given before by Parry
& Crighton (1989) but, for the sake of completeness, and since the comparison
serves as a check on the blade response calculation, we will give it again‘
here along with a brief discussion. Since the front and rear 4-blade rows on
the Gannet were run at slightly different speeds, the interaction tone
components could all be separated out in terms of frequency, thus allowing us
to examine each tone individually.

The first interaction tone generated by the Gannet is the (1,1)

4 Our solution is the complex conjugate of Goldstein's since he chose a time
dependence o 10t and we have used e, In addition, a phase term e'7 is
missing from our result since here the reference is the airfoil leading edge
and not the mid-chord as in Goldstein's work.
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interaction.5 The directivity plot (sound pressure level versus radiation
angle where 0° represents the direction of flight or the propeller axis) for
this tone is shown in figure 2. We can see that there is a null at the 90°
radiation angle in both the measured and predicted data. This is to be
expected since the (1,1) interaction tofie generates a plane-wave mode (on the
Gannet which has equal blade numbers, B1 and B2 on the front and rear rows),
i.e. n1B1 - n2B2 =-0. This tone peaks on the propeller axis and is zero in

the plane of the rotor. However, predictions are typically 25dB below the

measurements.
-1 ’ -~
A} -
',\ / \ /7~ N
{ v/ N/ \\ //‘ ~ P
N
— I’ \ / - \\/\\
"‘ \ /  MEASLRED \
1008 V! \\ /I \
\J
1] i A )
- \ \ // \ ]
ARy
) ! \J
i
-] |
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——1
T T 1 T T T I 1 | ANOLE 0
00 400 %00 1200 W00

Figure 2.  Gannet measurements vs predicted wake interaction noise for the

(1,1) interaction tone.

5  We will use the notation (nl,nl) to indicate an aerodynamic interaction
tone generated at the combination frequency nlf1 + nof,y where f1 and f2 are
the blade passing frequencies of the front and rear blade rows respectively.
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The next two interaction tones generated by the Gannet are the (2,1) and

(1,2) interactions, for which directivity plots are shown in figures 3 and 4

respectively. For these interaction tones the predictions are at least 10dB

below the measurements. In fact, it is not only the levels which are

incorrectly predicted but also the directivities: predictions are 20dB below

the measurements for the (1,2) interaction in the forward arc, and 40dB below

the measurements for the (2,1) interaction in the rear arc.

~
7N\
/ N
-~ r 4 \
/7 N 4
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1008 d \
! \
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' \
\ \
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' ANGLE O

Figure 3.  Gannet measurements vs. predicted wake interaction noise for the

(2,1) interaction tone.
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Ke sow refer to the discession oa imicraction ose direclivities given

by Bradley (1936) amnd Parry & Crightoa (1989). There it was showa that,

2lthoesk the meassred directivities are similar in Ievel ja forvard and rear
arcs, amy moise sosrce o2 tke rezr blade rov will prodece esly asymmetrical
directivities (except for the plame vave cese shere m; = 2,).  There must,
therefore, be a significant moise source oa the forward blade rox. In order
to generate tones at the (nl,m.z) interactioa toxe frequencies, the poise
source can only be that due to tke interactioa of tke forward blade rox with

the potentizl field geaerated by thke rear rox.

3. POTENTIAL FIELD INTERACTIONS
Accordingly. we proceed to consider the scattering of a poteatial velscity
‘{ield by an airfoil. In additioa to the imteraciion of the forward blade row
with the potential field generated by the rear row, it scess appiopriate to
include the interaction of the doxmstream blades with the bound potential
field generated by the forvard blade row, because that is likely to generate
at least as large a field as that from the interaction of the forward rox with
the potential field of the rear row. The latter involves a trailing edge
(weakly loaded if a Kutta condition is satisfied), the former a leading edge
(highly loaded). As before we assume that the detailed velocity field is
known (the modelling of the bound potential flow field of a counter-rotation
propeller, in compressible flow, is described in full by Parry 1988) and
consider a single harmonic component of the upwash

v = u exp(ivt- imx) (12)
ony=0. The axes x and y are centred on the airfoil trailing edge, for
upstream interactions, or on the leading edge, for downstream interactions, as

shown in figure 1. The velecity in the x-direction is U and 7 is the complex
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Figure 4. Gannet measurements vs. predicted wake interaction noise for the

(1,2) interaction tone.

Airfoil response - upstream row
An analysis similar to that given in §2 shosws that the transformed velocity
potential ¢, related to g by (5), again satisfies the Helmholtz equation

V2¢ + Kzﬁ = 0. The boundary condition, however, is now given by

¢ *
ww=-exp(-isX) on Y=0, -0¢<X0 (13)

vhere
* 0M2

E = [+ —F

-5’
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(14)

b= 1c/2.
For simplicity, since the pressure p is related to the transformed potential ¥
by (9), we define a transformed pressure
* d
p= [iIC + ]ﬁ. (]5) -
The solution is obtained by the Wiener-Hopf technique and will be

described here in detail. We define + and - Fourier transforms by

¥,(s,Y) =r $(X, V)H(=X) e Rax (16)
=00
where H(X) is the Heaviside unit function. The inverse tramsform is given by
$(5,Y) = ;—TJQ ¥(s,Y)elS% ds. (17)
c® <
On Fourier transforming the Helmholtz equation (6), we obtain
¥(s,Y) + y2¥4(s,Y) = 0, (18)

where we use primes to denote differentiation with respect to Y and

x = JK%s%). (19)
llere we choose the branch of the square root so that y - -i|s| as s 4 #.
The branch cuts in the complex plane are shown in figure 5. The wavenumber K

is taken to have a small imaginary part.
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Figure 5. The integration contour and branch cuts in the complex plane.

We now consider the region X > 0 where we assume continuity of pressure
N .
across the wake. From (9) and (15) p is also continuous across the wake so

that, on Fourier transforming (15), we obtain

i(r-5)[¥,(s,0-) - ¥ (s,0+)] = 0. (20)
Since ¥ must be an odd functin of Y this leads to
¥ (s,0+) = 0. (21)

If we now take the Fourier transform of p* in the region X < 0 we obtain

-2i(k-s)¥ (s,0+) = APT(S) (22)
where we have again used the fact that.¢ is odd in Y and APT represents the
transform of the jump in p* across the airfoil.

The boundary condition (13) can be Fourier transformed to give
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where the integral converges provided that Xs) < éin*) and Xz) denotes the
imaginary part of z. :
From (6) and the requirement that the fields decay at infinity we obtain
¥(s,Y) = O(s)e Y (24)
where we have taken Y to be positive. (For Y negative we can again use the j
fact that ¢ is odd in Y.) On differentiating (24) and setting Y = O+ we
obtain
¥'(s,0) = -iy¥(s,0+). (25)
Substituting (21) and (23) into (25) we find that

i
¥!(s,0) + —x = ix¥_(s5,0+). (26)
S-K

We now put y = y/(K+s)(K-s) so that, on dividing through by y(K-s), (26)

becomes
¥ (s,0)

i
. = 1/(Kss)E (5,00). (27)
M) (o iyics)

llere the first term on the left-hand side is a + function and the right-hand

side is a - function. The second term on the left-hand side can be split, in
the usual way, into the sum of a + function and a - function. We thus
rewrite (27) as

i;(s,o)

. 1 [ 1 ) 1 ]
fes) o) VKD [

- - i/(kes)¥. (5,04) -

(28)

(1))
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where the left-hand side is a + function and the right-hand side is a -

function. By the usual arguments resulting from Liouville's theorem, both
sides of (28) are equal to an entire function E(s) which must be identically
equal to zero (otherwise il(s,O) would diverge as s + o implying that ¢ has a
singularity at the origin). From (22) and the right-hand side of (28) we

then obtain

AP (s) = 209) (29)

(s-n*) (K—n*)(K+s)
We now apply the inverse Fourier transform, as defined by (17), whence

At (1) = — r (9) ot (30)

r/ (k-/c*) - (S'N*)N/(K*_S)

On wrapping the integration contour around the branch cut in the upper half

plane we find that

* 2ein+ix/4 (k+K- is') Xs! 2(n-n*) -im*X
Ap (X) = = ‘r» e ds' - T (31)
r (K-&) 0 JQT(S'+1K+iN ) J(Kz-x 2)
where the final term represents the contribution from the pole at s = x . On

evaluating the integral we obtain
¥ 2(,{’_ IC*) * 2ele— 1[/4

_ R ) RK [ ikein ) |-o 18 Ry e
ap (X) véggj;;éa{e [1 X| (iK+ik )] e ] J{;EE:;;;I;IE

2
where w(x) = ¢ * erfc (-ix) is the complex error functin (see Abramowitz &

Stegun 1965).

(32)

We now impose a Kutta condition at the trailing edge of the airfoil. In
the appendix we show that this is equivalent, in this case, to removing the
inverse square-root singularity at the trailing edge. Then, from (9), the

pressure jump across the airfoil is given by
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where we have defined the normalised frequencies
* oM ~ oM
A ¢ VIR ovy I (34)

Leading edge correction

In th2 previous section we dealt with just the trailing edge problem and
consequently the leading edge effects have been neglected. Since leading
edge effects can be important, as they are usually heavily loaded, we will
discuss a correction to the present results to account for such effects.

We will use a technique developed by Landahl (1961) and Adamczyk (1974),
and discussed by Amiet (1975), for downstream convected gust interactions.
This involves an iterative technique for the solution of a 3 part boundary
problem.  The situation is shown in figure 6 with the upwash specified on

-2<¢X<0.
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STAGE 1: TRAILING EDGE PROBLEM

-ik X

o4y

ay

e

~ik X
a—'J’4>ve =0

3y

STAGE 2: LEADING EDGE CORRECTION

Apz = -4p

!
!
| 22

—

lay

Figure 6. Three-part boundary value problem.

The first iteration involves solving the trailing edge problem with upwash

specified on - < X < 0;

*
i.e. we set Ap, = Ap,d09/dY = -exp(-ix X), on Y = 0.  The second iteration

involves correcting the upstream boundary condition on - < X < -2 without

vt ey G ——— ——— — — — d— i t—]

ap = 0,
KUTTA CONDITION

31:2

_._.-o

ay

this is the case discussed in the previous section,

affecting the boundary condition on the airfoil, i.e. on -2 < X < 0.

therefore require the 'new' pressure difference across -w < X < -2 to be minus
that obtained on the first iteration, i.e. Ap2 = —Ap1 on -0 < X < -2, and the

upwash on -2 < X < » to be zero.6

6 VWe will use the suffix 2 throughout this section to denote 'second

iteration' values.
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the boundary condition on 0 < X < w which could be corrected by a third

iteration and so on.
We define a new coordinate X centred on the airfoil leading edge so that

X=X+2.  The pressure jump Ap, across -o < X < 0 is minus that obtained in

the previous section so that
Apy(X) = -Ap(X) = -Bp(¥-2). (35)
Then, from (9) and (15), the normalised pressures are related by a phase

shift: Apy(X) = -exp[-2iM%/(1-H9)]Ap (%-2).  From (32) this leads to7

- 2(n—n*) . ot
Apz(X) = - (1(272—) exp[—21 1‘3{—2-]

N {eiK(i'z)w[iJli-2|(iK+in*)]-e'i“*(X'2)]. (36)

Since we are considering a high frequency problem, ¢ and p are both large.

Then, from (7) and (14), the argument of the complex error function in (36) is

also large on X < 0 so that, from Abromowitz & Stegun (1965), we can use the

approximation
- " 1
w[iy|X-2| (iK+ik )] ~ . (37)
- *
7|X-2| (iK+ix )
(In order to use this approximation we have used the fact that

larg (iK+in*)| < 7/2.) In addition, since p is large and Xp) # 0, the last
term in braces in (36) is from (14), exponentially small on X < 0;

« -
consequently, this term will be neglected. The jump in Py across X < 0 can

7 Recall that the inverse square root singularity term has been removed in
order to satisfy the Kutta condition.
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therefore be approximated by

2(K%E*)

0M2 -
exp[-zi — iK(X—2)]. (38)

-
Apz(X) v

44(ix+in*)(x2-n*2)|x-z|

The boundary condition is that of no upwash so that

— =0, X>o0, (39)

where, for consistency, we have replaced Y with Y.

The problem is therefore defined by the Helmholtz equation with the

« -
boundary condition (39) and the jump in Py across X < 0 given by (38). The
solution is again obtained by the Wiener-Hopf technique with + and -

transforms defined by (16) and the inverse transform defined by (17).

‘-
The Fourier transform Ap,(X) is given by

M 0 el(sH)X
exp[-Qi —5 - 2iK] J

1-M -0

AP;_(S) . 2(k-k )

dX.

v/x(iK+in*)(K2-n*2) (2_i)

(40)
We now use the fact that K is large so that the integrand in (40) oscillates
rapidly. Then the integral is dominated by contributions from close to X = 0
and, by following Murray (1974), we can approximate (40) to leading order in
1/(K+s), by

Yo oM
(e ) exp[—2i[{fﬁ§ + K]]. (41)

AP;_(S) = -

/ ey e *2
r(iK+ik ) (K% & 2) (s+K)
From this point we proceed with the Wiener-Hopf technique in the usual

manner and the pressure jump ApQ(X) is finally obtained as
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AP2(X) = " =
(ipric ) (1-¥2) (io- ip)

x {w[-e_ix/ll\/ 27(14X)] - e T L

where we have reintroduced the normalised frequencies ¢, g, ¢ and ¢ and, in
addition, we have defined

) M . )
0= —50 c= 7.

1_ M2 ’ M 1' M

We note, from (42), that we have restored the inverse square root singularity
at the airfoil leading edge. The pressure distribution on the airfoil is
given by the sum of (33) and (42). Comparing these equations we see that,
apart from the exponential decay term e'i”X in p and the inverse square root
singularity 1/JQI:;; in py, the first and second stage solutions are basically
of the same form apart from the factor 1/J(ip+ia*) in py.  Since we are %
considering a high frequency problem both z and ¢ (and hence a*) are large.
In the high frequency limit therefore the first correction to the trailing
edge problem is 0(1/y#) smaller than the leading order term - even though the
correction term includes the inverse square root singularity at the airfoil
leading edge. We conclude that, in the high frequency limit, the

semi- intinite airfoil model is a valid approximation and provides accurate

results to leading order in ¢.

Airfoil response - downstream row
The airfoil response calculation for the downstream blades is calculated in
much the same way as for the upstream blades. The only difference is that

now we have to solve a leading-edge problem instead of a trailing-edge
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problen. The least singular solution is chosen, and has an inverse square

root pressure singularity at the leading edge. ;
The Wiener-Hopf technique can be used, as before, to obtain the pressure
difference across the airfoil (which now occupies y = 0, 0 < x < ) as

-2pul

J (W) (i)

Bp(X) =

~

. {_l(if‘)_ [ 108, K i) - € ] - j—_iax}. (44)

Measurement vs. prediction
As in §2 we combine the results given here for airfoil response with the
appropriate noise radiation formulae and a model for the unsteady potential
velocity field (Hanson 1985; Parry 1988) in order to obtain predictions of
far-field noise which can be compared with the Gannet data. Note that here,
unlike the case considered in §2, we have noise sources on both front and
rear blade rows. The relative phasing of the two sources should, therefore,
be corrected to account for spatial separation (as discussed by Hanson 1985).
lowever we will, for the present, consider the two fields separately.

The first interaction tone generated by the Gannet is the (1,1)

interaction. The far-field directivity of this tone is shown in figure 7.
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Figure 7. Ganaet measurements vs. predicted wake and potential field

interaction noise for the (1,1) interaction tone.

The first thing to note is that the predicted potential field interaction
noise is significantly greater than the predicted wake interaction noise:
predicted forward and rearward potential field interaction tones are,

typically, 20dB greater than the predicted wake interaction tone. The

l ANGLE 0

the

predicted potential field interaction noise agrees extremely well with the

measured data in both forward and rear arcs - except, perhaps, for a

discrepancy in the range 140 - 160 degrees,

The next two interaction tones generated by the Gannet are the (2,1) and

(1,2) interaction tones, for which directivity plots are shown in figures 8

and 9.

noise levels are significantly greater than the predicted wake interaction

llere we see, again, that the predicted potential field interaction
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noise levels - typically by 20dB (and more at some angles). Note that, as we
remarked in §2, sources on the forward blade row (due to the upstream
potential field interaction) generate far-field directivities different from :
those of sources on the rear blade row (due to the downstream row and
potential field interactions).

We emphasise that the predictions, shown in figures 7 - 9, are absolute
level predictions governed solely by the theoretical prediction scheme
outlined above and dependent on the high-frequency approximation. The inputs
for the calculation of the scattered fields are the incoming velocity fields:

models for these are described by Parry (1988).
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Gannet measurements vs. predicted wake and potential field

interaction noise for the (2,1) interaction tone.
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interaction noise for the (1,2) interaction tone.

4. CONCLUSIONS

We have described a model for the calculation of umsteady velocity fields
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scattered from airfoils in subsonic compressible flow at high reduced

frequencies. The model covers interactions of leadirg edges or trailing
edges with convected or nonconvected (potential) gusts. In addition, aa
iterative technique has been outlined by which the scattered field can be put
in the form of an asymptotic series with successive terms decreasing by
0(147), where ¢ is the reduced frequency.

Comparison with noise measurements taken from a Fairey-Gannet
counter-rotation propeller has shown that the analysis produces éxtremely
accurate results - in terms of both the absolute level and the far-field
directivities - with no adjustment whatsoever of the theoretical predictions.

In addition, the comparison with measured data has shown that, for the
Gannet, the downstream wake does net dominate the aerodynamic interactionms,
and that the potential flow field around each row generates significant and

indeed dominant effects, both upstream and downstream.
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APPENDIX: THE KUTTA CONDITION
In our analysis the airfoils have been modelled as flat plates (finite or
semi- infinite). As we have found, the pressure jump across the plate has
inverse square root singularities at the edges of the plate. In order to
alleviate the singularity at the trailing edge we must introduce a vortex
sheet, extending to downstream infinity, across which the tangential
velocities jump but the pressure is continuous. If the strength of the
vortex sheet is fixed in order to cancel exactly the trailing edge
singularity, then a Kutta condition is said to be satisfied.8 The use of a
Kutta condition in unsteady flow is a matter of controversy at the present.
For the moment, however, we will assume that a Kutta condition is satisfied.

We look for a potential ¢K which satisfies the llelmholtz equation (6)and
is odd in Y. Then, downstream of the trailing edge, there is a jump in the
potential across the vortex wake so that

iuKX
¥ = Ce on Y=0& X>0, (A1)

where vy and G are to be determined.  Now p:(X) is continuous across Y = 0

since py(X) is continuous?® so that (15) implies that vy = -x. Since there is
K K

8 A more detailed discussion of the Kutta condition in unsteady flow is
provided by Crighton (1981, 1985).

%
9  The definitions of PK and pg are the same as in §§2, 3 except that we have

introduced a subscript K on those parameters relating to the velocity
potential ¢K'
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no additional upwash the boundary condition is

oy
=0 on Y=0, X<0. (A2)

We now have, once again, a two-part boundary value problem which we will

solve by using the Wiener-Hopf technique.!® We then obtain, on X < 0,
2G (K'Ht) ein+iT/4

ApK(X) =- \/2—'1/(—-?)- . (43)

This shows that the effect of the Kutta condition here is merely to remove

the inverse square root singularity at the trailing edge, i.e. we select
i
6 = —— (A4) '

() (K-8

so that the sum of (32) and (A3) contains no term in 1/v43ﬂ,

A. B. Parry

Department of Mathematics
University of Strathclyde
Glasgow G1 1XH

Scotland, U.K.

10 Crighton (1977, Chap. 9% shows how the Wiener-lopf technique can be used
to solve a trailing edge problem in unsteady compressible flow with a Kutta
condition imposed.
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M.K. PIDCOCK
Boundary problems in electrical impedance
tomography

ABSTRACT

The reconstruction problem for Electrical Impedance Tomography is an extremely
ill-posed non-1linear inverse problem and the results obtained are highly
sensitive to modelling and measurement errors associated with the technique.
In this paper we continue our investigations into some simple problems which
involve geometric errors and which can be solved by using perturbation theory.
The sensitivity of the technique to these errors is made explicit and we
describe one way of overcoming these difficulties which is suggested by the

analysis.

1. INTRODUCTION
Electrical Impedance Tomography (EIT) is a technique of medical imaging which
uses the contrast in the electrical conductivity of different body tissues to
produce an image of the conductivity distribution within a part of the body.
In many circumstances this image can be interpreted as a physical image and a
number of potential medical applications of this technique are being
investigated. The data used to obtain these images are measurements taken on
the surface of an object of the electrical potential which are induced in the
object by the application of known electrical currents to that surface.
Mathematically, the problem of EIT can be posed in the following way.
Suppose that an object @ with boundary  consists of an isotropic Ohmic
material with conductivity distribution ¢. If ¢ is the electrical potential

in © then
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vhere

¢ is known (measured) on 0

9
X is known (applied) on %

It is important to note that one consequence of this model is that the

applied current, j, satisfies A
Jm j ds = 0. 1)

The aim of EIT is to determine ¢ from the boundary data. It has been
shown [1-5] that this problem has a solution for many reasonable conductivity
distributions and reconstruction algorithms have been described [6-11] which
work well in simple cases and in the absence of errors. However, the
reconstruction problem of EIT is a highly non-linear inverse problem and it
has been demonstrated numerically [7] that the Fréchet derivative of the
mapping which takes an applied current to a measured voltage has singular
values which decay exponentially. The inversion procedure is therefore
extremely sensitive to the possible errors associated with this technique.

There are a wide range of such errors which have to be considered. These
range from basic deficiences in the mathematical model of the system to
numerical errors introduced in the solution of equations in the reconstruction
algorithm and data measurement errors defined by the instrument specification.
Each has its own characteristics and a detailed study of them is essential if
EIT is to become a useful diagnostic tool. The interaction of any
reconstruction technique with a model of these errors represents one of the
attractions of inverse problems.

In this paper we will consider just one type of error - that of imperfect

knowledge of boundary shape. We will consider a class of simple problems
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which can be solved using perturbation methods. This may be a little

artificial but it does enable us to follow a parameter which characterises the
boundary error in an explicit way. In EIT the électric current is applied to
the surface via a number of electrodes positioned on the boundary but in this
work we will assume that the current is adjustable at any point on the
boundary.

In Section 2 we will describe the basic problem and the ideas behind our
éalculations and in Section 3 we will discuss a particular example of boundary
error where the boundary is perturbed from its assumed shape in a simple way.
In Section 4 we will extend our analysis to more general perturbations and
suggest a scheme for identifying the parameters in the perturbation. We use

polar coordinates (r,f) throughout.

2. THE MODEL PROBLEM
Most of the studies in EIT have been concerned with the two-dimensional
problem and a simple example often considered is that of distinguishing

between two conductivity distributions 01> 0q oOn the unit disc, 0 < r <1

defined by

0,(r,0) =1 0<r«i
0o(r,0) = ¢ 0<r<h«1
1 R<r¢1

It is easy to show that if the applied current j(6) is given by
o0
j(d) = ngl a cos(nd) + b sin(nd)
then
. w rn .
¢(r,0;01,3) = n§1 ﬁ—[ancos(nﬂ) + bn31n(n0)]
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[+ o]
(r,00953) = 3 Anrn[ancos(nﬁ) R bnsin(nO)]

where

1 2n_2n -1
A, = H[l'”R S ] withs=r §r>R;, and p=—7.
1+pR2n R (r<R

As we are able to choose coefficients (an, bn) in anyway, it is natural to
ask if there are any combinations which are somehow better than others.
Gisser et al [12] have suggested that if we wish to distinguish between ¢, and
0o then the best normalised currents (i.e. |Ijll = 1) to use are those which
maximise
65 = 114(r,6504,)-4(r, 6509, 3)
where

1
<f,g> = = Jaa fg ds and Hf"2 = < f,D>.

In other words, we should try to maximise some average difference between
the signals measured in the two cases. Other criteria for the choice of
optimal currents have been proposed [13] and these will have different
stability properties when interacting with the geometric errors considered in
this paper. We have not yet studied these alternative currents and we
confine our attention to those proposed in [12].

For the case of the problem described above, these optimal currents turn
out to be trigonometric functions j () = cos(mf), sin(mf) for integer m, and

. 2 uR?m
the corresponding value of 6m = 6jm is - 211;5755'
that if this value of §m is less than the accuracy, E, of the measuring

It is interesting to note

equipment, then ¢, and s, are not distinguishable using the current J, since

the value of 6m could be an effect of noise. However, if 6m > B then we can
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distinguish between these two distributions. This is the basis of the

calculations which we will report in the next section. We will calculate 5m
arising when these optimal trigonometric currents are applied to a body whose |
shape is thought to be the unit disc and which consists of material with a ;
uniform conductivity distribution, 0y If the boundary were correctly known E
and all the measurements were accurate then the value of.&m would be zero. 5
; The error in the boundary description will mean that a non-zero value of 6m
will be obtained and if 5m > E we could, erroneously, infer that there is a

circular anomaly of the form 0y

3. BOUNDARY DISTORTION
Consider the situation where the angular displacement of the drive electrodes
is correct but the polar description of the boundary curve is r = r(6) rather

: than r = 1. In this case we have that
X ¢ 1[ ¢ '0)(?9’5]

il )| UG -l ¢ W (2)

and

Jm jds = JZ’ W(0)i(0) d6

L1/
where w(f) = [r2(0) + r'2(0)] / .
If r(0) = 1 + €F(0) then we can write (2) in the form

Ad 2. 3
55(1+5F(0),¢) = Qg€+ BgE” + age” + L.

where (@1, .. are functions of @ and the partial derivatives of ¢ with
respect to r and 4, evaluated at the point (1+¢F(4),6).
We can estimate the partial derivatives at this point by expanding these

functions in a Taylor series about the point (1,6). If we then write ¢(r,d)
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in the form
§(r,0) = ¢°(r,0) + ¢L(r,0)¢ + $2(r,0)¢® + 3(r,0)¢3 + ...
we find, finally, that

¢ 9 3 f
55(1+6F(0),0) =B, + Pye + Boe” + ﬂ3e + ... }
where the functions ﬂo’ﬂl"" are complicated functions of # and the partial
derivatives of ¢°,¢1,... with respect to r and § evaluated at the point (1,6).
Suppose that we have the simple case r(f) = 1 + € cos(f), i.e.

F(8) = cos(f), then we find that
27 9 1/2
J j ds = j [1+2e cos fre ] i () d8.
on 0

If we now try to apply the optimal currents jm(ﬂ) described earlier, we
find that the condition (1) can be satisfied exactly only for jm(0) = sin(mf),
m an integer. So, for example, if we apply j1(0) = sin(f) to the distorted
boundary we find that at the point (i,8)

d 0

=

B, =

iy

o' 09 o
By =g +cos b 5;7— + sin() 7
and similar, but more complicated, expressions for other f's.
Since ¢ satisfies Laplace's equation in @ so too do ¢°,¢1,... . On the
boundary, r = 1, we find that ﬂo = sin(f) and ﬁl =fy=...=0. After
considerable computation it follows that

(A = 1661+ cos(8),0) - cos(B)]
€ 8 9
= Z(1+ § [ -'-)

In general, if j(#) = sin(md) then we find that
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1/2
€+ 0(63) m# 1

1 m2+1
A€ = ———[—2
1"m Im2'1l
We can generalise the type of perturbation slightly by considering
boundaries defined by r(d) = 1 + ¢ cos(kf) (k = 1,2,...). If we try to apply
the optimal currents j (6), we find that equation (1) restricts these currents

to sin(mf) for m an integer and that

€
k kA; it 0(63) m=k

3
2-k2| 5 ¢ + 0(¢”) m>k

€ + 0(63) m<k

1 . 1 12y1/2
/)

In Table 1 we give values of kA; for a range of values of k and m. It is
clear that there is a direct relationship between the detectable error in
boundary shape and the measurement accuracy of the system. It is interesting
to note that the observed behaviour gives a possible scheme for identifying
displacements of this rather special type. It appears that if we apply
currents of increasing spatial frequency all we nced to do is to locate the
dip in the values of A against frequency in order to identify k.  Further
comments on the interpretation of kA; can be found in Pidcock and Breckon

[14].
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K™ 1 2 3 4 5 6
| 1 0.25 0.53 0.28 0.19 0.15 0.12
: 2 3.02 0.25 1.02 0.53 0.36 0.28 ’ ;
§ 3 3.77 4.51 0.25 1.52 0.77 0.53 |
] 4 4.68 5.01 6.01 0.25 2.01 Loz|
§ 5 5.64 5.84 6.26 7.51 0.25 2.51
; 6 6.61 6.76 7.01 7.51 9.00 0.25

be multiplied by ¢.

f 4. GENERAL FOURTER PERTURBATIONS

i Table 1. Values of k kA; for various values of k and a.

All entries should

It is interesting to note that for small €, the relationship between A€ and ¢

given the previous section is essentially linear and that it appears possible

to perform simple experiments to determine the parameters of the perturbation

once its general form is known.

The relative ease of these tests encourages

us to think that more general perturbations which can bte described in terms of

a Fourier expansion might be identified by a suitable series of such tests.

Such an expansion should be very appropriate in the case of che human body

where the relative smoothness of the body surface should lead to an economical

description in terms of trigonometric series.

Consider, therefore the more general boundary perturbation given by

1 ®
F(6) = 54, + ngl A cos(nf)

If we try to apply one of the optimal boundary currents it is easy to see

that (1) implies, once again that we must use sin(mf) for integer m.

Following the analysis described in the previous section to first order in ¢
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we find that

3° )
a.1 32.0 a'o

=300 F0) 3 0.0) - @) (1.0 = 0

aad it follows that

o r
¢ (r.0) = -sia(mf)

lr.0) =- T — B%ia(k6)
0 (r.0) =- B g By -

. =
shere BY = 5{(k-1) A1 gy = (o)) 4,)-

Hence, the potential actually measured differs from that expected *f there
were no boundary error by an amount

56y(8) = °(1+€F(6).0) = € ' (12¢F(8),0) - °(1,8) = (")

S 2 _. 2
€ LEI ¢ sin(kd) + 0(c”) 3)

where cf = %[Alm-kl - (2k1) Amk].

We now have a possible scheme to determine the Fourier coefficients. It
goes as follows. Apply a series of currents sin(mf) to the object and
measure resulting voltages at a number of points. Use a Discrete Fourier
Transform to express the measured voltage 64.(6) in terms of its Fourier
components and use the above expression (3) as a system of linear equations to
determine {4;}. The implementation of this scheme and a detailed study of
its numerical stability, together with an investigation into the effects of
using only a finite number of electrodes,is the subject of future work in this

area.
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CONCLUSIBN

Ve have scea that the reconstrectioa problem for EIT is extremely seasitive to
errors in the boumdarv shape. The amalysis presested has, however. offered 2
possible way to overcome this nroblem. A study of this method will be

preseated elseshere.
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B.D. SLEEMAN

Interior and exterior inverse problems for
the Helmholtz equation

1.  INTRODUCTION

In this paper we discuss a nusber of recent developments relating to inverse
prosicas for the Helwholtz equation. In particular we concentrate on the
problem of determining the geometry of an unknosn domain (e.g. vibrating
mesbrane or scattering obstacle) from given data.

The paper is presented in tvo parts. In Part I we consider the classic
inverse problem of determining an unknowxn domain 2 from a knowledge of the
eigenvalues of the Laplacian defined in ©. 1In §1 we survey the classic
asymptotic estimates for the counting function N(1). Beginning with the
fundamental results of lermann Weyl we survey the most recent results for non
smooth domains. In §2 we take up the Weyl-Berry conjecture regarding the
asymptotics of N(A) for fractal domains. In particular we describe the
recent contributions of Fleckinger and Lapidus.

Part IT of the paper is concerned with the important inverse acoustic
scattering problem. 1In §3 we formulate the direct scattering problem which
provides the basic setting for the inverse problem. §4 discusses the central
question of uniqueness of reconstruction of an unknown scattering obstacle
from far field data.

In §5 we consider the "exterior" amalogue of the asymptotics of N(1) by
discussing the high frequency behaviour of the scattering phase s(k). In
particular we concentrate on the asymptotics of s(k) for non-smooth domains,
which complements the recent results of Melrose, and also fractal domains.

This latter result provides the exterior analogue of the Weyl-Berry
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conjectere.  §6 returns to the practical problem of devising algorithms for

the nuzerical reconstruction of the unknosn scattering obstacle.

¥hile this paper is largely expository, a number of the results are new
and have not previously appeared in the literature. Theorem 2.3 is new as is
Theorem 4.4 regarding uniqueness. The results embodied in Theorems (5.2),

(5.3) and (5.4) are also uew.

PART I
INTERIOR INVERSE PROBLEMS
§1 Geometry of the Counting Function
Let @ be an arbitrary non empty bounded open connected set in R"(n > 1) with
boundary T = & and consider the eigenvalue problem
-Adu=Xdu inQ,

u=0 onT, (1.1)
n
wlere & = kﬂ 62/8x% denotes the Dirichlet Laplacian in 9. The parameter 1 is
.=1

said to be an eigenvalue of the problem (1.1) if there exists a u # 0 in H;{Q)
satisfying -Au = Au in the distribution sense. It is well known that the
spectrum of (1.1) is discrete and consists of an infinite sequence of
eigenvalues which may be ordered according to their multiplicity as

0<A <Ay e <A<
vhere Ai 2 0asS1-w

In 1912 Weyl [47,48] estaoiished the classical result that
i .2/
,\.~C[ ] as i+ w, (1.2)
1" "n(lof,
where C = (27r)2(Bn)'2/n depends only on the dimension 'n'. Here |Q|n

denotes the n-dimensional Lebesgue measure or "volume" of © and B, is the
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volume of the unit ball in R".

Arother way of estimating the asymptotic behaviour of the eigenvalues

{;)5- is to work with the “counting function" N(1) defined as

NQ)=8{i>1,0< A < A}, for 1 > 0. (1.3)
Consequently Weyl's result can be restated as
N() ~ (20" B_J2] A2 as ) 4 o, (1.4)

In a classic paper eatitled “Can one hear the shape of a drum?" Kac [19]
has asked the following question: Can someone with perfect pitch recover the
precise shape of a drum just by listening to its fundamental tone and all the
overtones? This question has motivated some important advances in the last
two decades. In the first place, it is natural to ask whether the problem
has a unique solution. Unfortunately, the answer appears to be no in
general. Urakawa [44] has discovered two isospectral domains in R" (n > 4)
which are not isometric. Despite this it is possible to recover a lot of
topological information about € from the spectrum of (1.1) and in particular
from the counting function and other related functions. Indeed, if T is
smooth (i.e. of class C°) then Seeley [36] and Pham The Lai [24] have shown
that

N = @077 B 10] 32+ 0 (M D/2) g ) 4 (1.5)
The proof of this result makes use of techniques from the theory of spectral
transforms and of Fourier integral operators (c.f. Hormander [16]). More

recently Ivrii [17] has shown that if @ is a bounded domain with C* boundary T

and if @ does not have too many multiply reflected closed geodesics then
N = @ B e V2 D20 (D2 55 ) o (1.6)
where Cﬁ is a positive constant depending only on 'n'. There are a number of

extensions of this result. For example Ivrii's result extends to the Neumann
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problem, the only difference being that the minus sign of the second term on

the right hand side of (1.6) is changed to a plus sign. Results are also
known for the "impedance" or Robin boundary value problem [41] as well as for
higher order positive elliptic operators with locally constant leading
coefficients [12].

An alternative attack on the problem is to study the asymptotics as t = 0°

of the "partition function" (or trace of the heat semigroup)
o -A:t
uqsré“wm=zel- (1.7)
0 i=1

which, when the integral exists, may provide more information than N(}).
Thus for example if T is C® and n = 2, McKean and Singer [31] and others have

shown that
() = ﬁ—'r' () ¢ 3 C
t) = — ~ + =(1- + X -t

here h is the connectivity of Q@ and the coefficients Ci are metric invariants.

if2 st 50" (1.8)

Indeed they are polynomiais in the curvature of T and its derivatives.

Smith {42] has shown how to compute these coefficients using symbolic
manipulation techniques.

If T is not smooth then neither (1.6) or (1.8) are expected to hold. For
example if Q has an outward pointing cusp then Waechter [46] has shown that

(1.8) takes the form

el 7] -y
Z(t):m-m+0(t ),0(1’(1/2. (1.9)

If we consider the Neumann problem then even the first term of (1.5) may not
hold if the boundary T' is "too long". This can be demonstrated in the
following example due to Fleckinger and Metivier [11].

For a given positive number § define the set ,

2 = {(x,y) € R¥x € (0,1),0¢<y<t + jgnj-ﬂ¢1j(x)}’ (1.10)
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where (Ij)j € N is an infinite sequence of disjoint open intervals in (0,1)

and where ¢I- denotes the characteristic function for the set Ij, i.e.

J
1, xe 1.

’slj - {0, x ¢ I;
then for the Neumann problem ve find that for 0 <f < 1/2
NO) =AY a5 5 5w (1.11)
where ~ means that there exist two positive constants ¢' ard C" such that
¢al/28 ¢ nay < enal/28
for all A sufficiently large.
In the following section we discuss the asymptotics of N(A) and Z(t) in

the extreme case when I is "fractal".

2. THE WEYL-BERRY CONJECTURE AND FRACTAL DOMAINS

In 1979 M. V. Berry [3] motivated by the study of the scattering of light
by random surfaces conjectured that if I' is "fractal" with Hausdorff dimension
Il € (n-1,n) then (1.6) takes the form

MM:(%Y%MMMWz-%mwﬁﬂwz+dwﬂ)%Aaw, (2.1)
here Cn’" is a positive constant, depending only on n and H, and #y(T) denotes
the Il-dimensional flausdorff measure of T.

Note that if I' is sufficiently smooth then Il = n - 1 and (2.1) reduces to
(1.6). lowever in gereral T is very irregular and hence If > n -1. Thus
Berry's conjecture seems a reasonable one. iivwcver in (1986) Brossard and
Carmona [4], through a series of illuminating examples, showed that (2.7)
cannot be true in general and proposed that the Hausdorff measure (dimension)
should be replaced by the less familiar Minkowski measure pg (dimension 6).

In order to understand recent contributions to the Weyl-Berry conjecture

we define the Nausdorff and Minkowski dimension as follows:-

170




Definition 2.1

Given d > 0, let p;(A) = lim {inf .g rg], where the infimum is taken over
0" i=1
all countable coverings of A by open balls {B;}j_; of radius r; <e. The
number pd(A) in [0,0) is called the d-dimensional Hausdorff measure of A and
li(A) = inf{d > 0,py(4) = 0} = sup {d > 0,p4(A) = w} is called the Hausdorff
Dimension of A.
Definition 2.2

Given e < 0 let T = {x € R":d(x,I) < €} be the ¢-neighbourhood of T.
For d > 0 let

kg = #y(@) = Lim supe @D e | (2.2)
6*0+
be the d-dimensional upper Mirkowski content of I'.  Then
D = D(F) = inf{d > 0,py(T) = 0}
sup{d >0,44(T) = w}

is called the Minkowski dimension of T.

If o< By < @ then T is said to be Minkowski measurable and Iy is called
the Minkowski measure of T.
Examples

1. Let A be the set of rational numbers in [0.1], then H(A) = 0 and D(A) = 1.

o o) .
2. Let A be the set A= n Ki’ where Ki is the union of 2' disjoint intervals
i=0
of length a; such that e, = l.and @, < ;/2.  Then
i .
1052 10g21

H(A) = lim inf , D(A) = lim
o 108(17a3) i S Tog(i/ay) °
If we have the classic 1/3-Cantor set then o; = 31 and

H(A) = D(A) = log 2/log 3.
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3. Lapidus [25]

Let a be an arbitrary fixed positive number and let £ C R" be the bounded

open set

Q= U (I; xJ) vhere J = (0,)" L, n > 1
1=1
and
I, = ((i+1)"%1°%
Then
H®) =n- 1and D@) =n- 1+ {ar1) L.
4. Brossard-Carmona [4]
Let @ c R be the countable disjoint union of all the small open cubes
belonging to the successive generations defined as follows:-
Let {Pi}"i”=1 be a nondecreasing sequence of positive integers. The 0-th
generation contains 1 square of side 1. The 1-st generation contains 4
squares each of side 1/3 and is divided into (P1)2 congruent small squares.

si-1 squares of side 31 and is

Similarly the i-th generation consists of 4x
divided into P? congruent small squares and so on.

Brossard and Carmona [4] show that irrespective of the sequence {r.}

H(®?) = log 5/log 3. However if , for example, Pl [ai] for same a > 1 and
where [ ] indicates "i;teger part of" then D(Q) = log 5a2/1og 3a.

It is known and of course clear from the above examples that H(A) < D(A).
More than this, examples 3 and 4 show that while H(A) is constant D(A) is
parameter dependent. The significance of this is that the Minkowski
dimension is more sensitive to the "roughness" of the boundary of Q@ than is
the Hausdorff dimension.

Returning now to our main theme regarding the Weyl-Berry conjecture

Lapidus and Fleckinger-Pelle [26] have proved
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Theorem 2.1 7

If 9 is bounded and if @2 is fractal with Minkowski dimension § € (n-1,n)
then %
N = (207" B_10] A2 + 000%2) a5 ) 4 o '
In addition this result has been extended by Lapidus [25] to more general
elliptic operators and to the Neumann boundary value problem. More recently
Fleckinger [10] has proved. !
Theorem 2.2 :
If @ is bounded and if @ is 6-Minkowski measurable with &-Minkowski
, measure p then i
! INCY) - (207" B, 101 A2 < ¢(n,8)0%? for all X 3 2.
In order to give the reader an idea of the arguments used to establish
results such as Theorems 2.1 and 2.2 we outline the proof of the following
result concerning the asymptotics of the partition function Z(t) for fractal
; domains in R%. This result is analagous to Theorem 2.2.
Theorem 2.3
If 0 ¢ R? is bounded and its boundary T is 6-Minkowski measurable with
0-Minkowski measure p, then there exists a constant ¢y depending on § so that

<t 012

Y
Z(t) = It

In order to prove the theorem we need the following preliminary results.

for all ¢ < by

i (1) Dirichlet-Neumann Bracketing
Suppose @ is a bounded open set in Rz, let NO(A,-A,Q) be the counting
function for the Dirichlet Laplacian on £ and Nl(A,-A,Q) th counting function
for the Neumann Laplacian on @. Then it is well known (c.f. Courant and

Hilbert [9]) that the following proposition holds.
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Proposition 2.1
If @' c @ then

Ny (4,-0,9) > N (A,-4,0"). 2.3)

If 0, and 9, are two disjoint open sets in @ with @ = @ U 9, then
No(A,-8,9,) + NO(A,-A,Qz) < Ny(A,-4,9)
< Nj(A,-4,0) (2.4)
<Ny (A,-8,0) + Ny (A,-8,9)
(2) Polygonal Domains
Proposition 2.2 [45]
Let
(1) D be a polygonal domain with boundary dD
(ii) Py,...,P be the vertices of dD and let ¥, be the infinite wedge of
angle 7; with vertex P, such that the boundary of the wedge contains
the two edges adjacent to P..
(iii)  Definme for y > 0, 7 = min 7;
B.(y) = {A € W, |d(4,P,) < ¥}
R = % sup{y[B;(y) 0 B;(y) = ¢ for all i # j’kngk(Y) c D}
Then
D] a0 2 T pj 1 ¢ (R sin 12)*
|2(t) - 77 + 52 . Tamy 1$(6m20 )5 168

Note [5] that a similar but less precise result holds for the "Neumann"

(2.5)

partition function together with a change of sign in the boundary term of
(2.5).
Qutline of the Proof of Theorem 2.3

To begin with we introduce a positive number € such that for all

¢ € (0,¢,)
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e &gty < 2 (2.6)

and choose P € N such that 2—p0 <€ In (2.6) we define
2, = {x € R|d(x,2) < ¢} (2.7)
where d(.,d2) denotes the Euclidean distance to the boundary aQ.
For each integer p we consider a tessellation of R? into congruent

non-overlapping squares
- (p+P,)
U ¢, € 72 with side g_=2 = ©
pF P
Define

- 2 '
A, = {(0 ¢ 10 ¢ 9],90 - congqu

ol = 0\a!.
A = {41 € szﬁ ‘ Qg}’gi =%V [412"1%],

o = 0y,

Ap = {Cp € Z2|Qcp ¢ 93-1}’95 = %1 U[{ﬁequfp]’

no_ Y
Qp Q\Qp.
We also define the boundary sets

- 2 b
%-{%ez|%pnm¢om%n9p-ﬂ,

R =u @,.
p B ¢
(pEB, 7P
We now make the following observations and estimates

- (p+P))
01) 0" c @ with e =427 =42.2 © where @ is defined by (2.7).
P Gp p P €p
Furthermore Rp o er.
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